Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.858-860
© 2018 The Japan Institute of Metals and Materials

Low Young’s Modulus Ti-Nb-O with High Strength and Good Plasticity

Qiang Li1, Dong Ma1, Junjie Li2, Mitsuo Niinomi1, 3, 4, Masaaki Nakai5, Yuichiro Koizumi3, Daixiu Wei3, Tomoyuki Kakeshita4, Takayoshi Nakano4, Akihiko Chiba3, Kai Zhou1 and Deng Pan1, 6

1School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
2INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
3Institute for Materials Research, Tohoku University, Sendai 980-5377, Japan
4Department of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka University, Suita 565-0871, Japan
5Department of Mechanical Engineering, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
6Research Center for Advanced Metallic Materials, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, Zhejiang, China

Oxygen was added to Ti-38Nb (mass%) alloys to improve their mechanical properties. Ti-38Nb-xO (x = 0.13, 0.24, 0.46, mass%) alloys were prepared by arc melting, and subsequently subjected to homogenization, hot rolling, and solution treatment. It was found that adding oxygen suppresses the martensite transformation and exhibits strong solution strengthening effect. Single β phase is obtained in Ti-38Nb-0.24O, whereas Ti-38Nb-0.13O is composed of both α′′ and β phases. Both alloys exhibit double yielding phenomena during tension, indicating a stress-induced martensitic transformation. Ti-38Nb-0.46O exhibits a non-linear deformation, a low Young’s modulus of 62 GPa, high tensile strength up to 780 MPa, and elongation around 23%, which are promising characteristics for biomedical applications.


(Received 2018/01/18; Accepted 2018/03/07; Published 2018/04/25)

Keywords: Ti alloys, oxygen, biomaterials, mechanical property

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Chen Q. and Thouas G.A.: Mater. Sci. Eng. R 87 (2015) 1-57.
  2. Gepreel M.A.H. and Niinomi M.: J. Biomed. Mater. Res. A 20 (2013) 407-415.
  3. Niinomi M., Nakai M. and Hieda J.: Acta Biomater. 8 (2012) 3888-3903.
  4. Li Q., Li J.J., Ma G.H., Liu X.Y. and Pan D.: Mater. Des. 111 (2016) 421-428.
  5. Coakley J., Rahman K.M., Vorontso V.A., Ohnuma M. and Dye D.: Mater. Sci. Eng. A 655 (2016) 399-407.
  6. Stráský J., Harcuba P., Václavová K., Horváth K. and Landa M.: J Mech Behav Biomed. 71 (2017) 329-336.
  7. Saito T. : Science 300 (2003) 464-467.
  8. Tane M., Nakano T., Kuramoto S., Hara M., Niinomi M., Takesue N., Yano T. and Nakajima H.: Acta Mater. 59 (2011) 6975-6988.
  9. Kim J.I., Kim H.Y., Hosoda H. and Miyazaki S.: Mater. Trans. 46 (2005) 852-857.
  10. Tahara M., Kim H.Y., Inamura T., Hosoda H. and Miyazaki S.: Acta Mater. 59 (2011) 6208-6218.
  11. Kim H.Y. and Miyazaki S.: Mater. Trans. 56 (2015) 625-634.
  12. Geng F., Niinomi M. and Nakai M.: Mater. Sci. Eng. A 528 (2011) 5435-5445.
  13. Liu H., Niinomi M., Nakai M., Cong X., Cho K., Boehlert C.J. and Khademi V.: Metall. Mater. Trans. A 48 (2017) 139-149.
  14. Li Q., Niinomi M., Nakai M., Cui Z.D., Zhu S.L. and Yang X.J.: Mater. Sci. Eng. A 536 (2012) 197-206.
  15. Abdel-Hady M., Hinoshita K. and Morinaga M.: Scr. Mater. 55 (2006) 477-480.


© 2018 The Japan Institute of Metals and Materials
Comments to us :