Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.835-842
© 2018 The Japan Institute of Metals and Materials

Heat-Conduction-Type and Keyhole-Type Laser Welding of Ti-Ni Shape-Memory Alloys Processed by Spark-Plasma Sintering

Abdollah Bahador1, Esah Hamzah1, Katsuyoshi Kondoh2, Seiichiro Tsutsumi2, Junko Umeda2, Tuty Asma Abu Bakar1 and Farazila Yusof3

1Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2JWRI, Osaka University, Ibaraki 567-0047, Japan
3Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

High-brightness and high-power laser welding with different welding speeds and laser powers was applied to join Ti-51 at%Ni shape-memory alloy, which was fabricated from the elemental pure Ti and pure Ni powders by spark-plasma sintering. Dendritic microstructures were observed in all the welds except the heat-conduction-type weld with the minimum welding parameters. In addition, the weld seam consisted of equiaxial grains surrounded by a narrow dendritic region. Based on the micro-X-ray diffraction pattern, in the keyhole-type welding, the martensite phase declined on increasing laser power and welding speed. Abnormal peak intensities were detected for (211) in the heat-conduction weld and (200) in the keyhole weld. Differential scanning calorimetry results revealed that phase transformation peaks of the conduction-type weld seam were similar to the base metal of Ti-51 at%Ni SMA, whereas the corresponding peaks of the phase transformation in the other weld seams shifted towards lower temperatures due to Ni depletion in the matrix, grain coarsening and residual stress. Therefore, the findings suggest that heat-conduction-type can be a promising method for surface treatment of Ti-Ni SMAs with minimum effect on the microstructure and shape memory properties.


(Received 2017/12/08; Accepted 2018/02/16; Published 2018/04/25)

Keywords: shape-memory alloys, spark-plasma sintering, heat-conduction-type welding and keyhole-type welding

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Maeshima T. and Nishida M.: Mater. Trans. 45 (2004) 1096-1100.
  2. Ikai A., Kimura K. and Tobushi H.: J. Intell. Mater. Syst. Struct. 7 (1996) 646-655.
  3. Oliveira J.P., Barbosa D., Fernandes F.M.B. and Miranda R.M.: Smart Mater. Struct. 25 (2016) 03LT01.
  4. Zhao X., Lan L., Sun H., Huang J. and Zhang H.: Mater. Lett. 64 (2010) 628-631.
  5. S. Katayama: Handbook of laser welding technologies, (Woodhead Publishing, Cambridge, 2013) pp. 142-143.
  6. Chan C.W. and Man H.C.: Opt. Lasers Eng. 49 (2011) 121-126.
  7. Falvo A., Furgiuele F.M. and Maletta C.: Mater. Sci. Eng. A 481-482 (2008) 647-650.
  8. Mirshekari G.R., Saatchi A., Kermanpur A. and Sadrnezhaad S.K.: Opt. Laser Technol. 54 (2013) 151-158.
  9. Vannod J., Bornert M., Bidaux J.E., Bataillard L., Karimi A., Drezet J.M., Rappaz M. and Hessler-Wyser A.: Acta Mater. 59 (2011) 6538-6546.
  10. Oliveira J.P., Braz Fernandes F.M., Miranda R.M., Schell N. and Ocana J.L.: Mater. Charact. 119 (2016) 148-151.
  11. Krone L., Schüller E., Bram M., Hamed O., Buchkremer H.P. and Stöver D.: Mater. Sci. Eng. A 378 (2004) 185-190.
  12. Shearwood C., Fu Y.Q., Yu L. and Khor K.A.: Scr. Mater. 52 (2005) 455-460.
  13. Zhang L., Zhang Y.Q., Jiang Y.H. and Zhou R.: J. Alloys Compd. 644 (2015) 513-522.
  14. Correa E.O., Costa S.C. and Santos J.N.: J. Mater. Process. Technol. 209 (2009) 3937-3942.
  15. Kurt A., Ates H., Durgutlu A. and Karacif K.: Weld. J. (Miami, Fla) 83 (2004) 34-37.
  16. Unt A. and Salminen A.: J. Laser Appl. 27 (2015) S29002.
  17. Takanori M., Nozomi N., Junko U. and Katsuyoshi K.: Trans. JWRI 40 (2011) 63-68.
  18. Wang T., Chen J., Gao X. and Li W.: Appl. Sci. 7 (2017) 299.
  19. Wang W., Yang X., Li H., Cong F. and Liu Y.: Chinese J. Lasers 35 (2008) 291-296.
  20. Hsu Y.T., Wang Y.R., Wu S.K. and Chen C.: Metall. Mater. Trans., A 32 (2001) 569-576.
  21. Yan X. and Ge Y.: J. Mater. Eng. Perform. 23 (2014) 3474-3479.
  22. Oliveira J.P., Miranda R.M., Schell N. and Fernandes F.M.B.: Int. J. Fatigue 83 (2016) 195-200.
  23. Yang D., Jiang H.C., Zhao M.J. and Rong L.J.: Mater. Des. 57 (2014) 21-25.
  24. Oliveira J.P., Braz Fernandes F.M., Miranda R.M. and Schell N.: Shape Mem. Superelasticity 2 (2016) 114-120.
  25. Chan C.W., Man H.C. and Yue T.M.: Metall. Mater. Trans., A 42 (2011) 2264-2270.
  26. Hall E.O.: Nature 173 (1954) 948-949.
  27. Petch N.J.: J. Iron Steel Inst. 173 (1953) 8-25.


© 2018 The Japan Institute of Metals and Materials
Comments to us :