Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.822-828
© 2018 The Japan Institute of Metals and Materials

Grain Boundary Segregation and Precipitation during the Plastic Deformation of 30Cr2Ni4MoV Steel

Wen Long Zhao, Dong Po Wang, Hua Dong Wang, Shi Cheng Ma, Yu Yi Wang and Yue Qian Zhang

Aerospace Special Materials and Processing Technology Institute, Beijing 100074, China

The carefully controlled forging of as-cast 30Cr2Ni4MoV steel was investigated as a mean to refine its coarse grain structure and crush the dendrites that cause segregation. This found that a fine-grained (∼50 um) structure could be achieved by deformation at 1000°C as a result of DRX. Grain boundary segregation of Mo caused a significant precipitation of MoC that could effectively pinned grain boundaries and suppressed the grain growth. In contrast, forging at temperatures above 1000°C led to a significant increase in grain size. Furthermore, the grain boundary segregation of sulfur resulted in the formation of low melting point sulfides near the grain boundaries that provided additional initiation points for intergranular cracking, thereby reducing the mechanical properties of the alloy. The results of this study therefore provide a basis for optimizing the forging process so as to improve the microstructure of heavy forgings, and sheds new light on the mechanism of grain refinement and crack initiation for 30Cr2Ni4MoV steel.


(Received 2017/11/24; Accepted 2018/02/26; Published 2018/04/25)

Keywords: forging, microstructural evolution, carbide, segregation, precipitation

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Zhao W.L. and Ma Q.X.: Mater. Trans. 55 (2014) 1568-1574.
  2. Hwang S.K., Baek H.M., Lee J.W., Son I.-H., Im Y.-T. and Bae C.M.: J. Mater. Process. Technol. 214 (2014) 318-325.
  3. Capdevila C., Caballero F.G., García-Mateo C. and Andrés C.G.: Mater. Trans. 45 (2004) 2678-2685.
  4. Wu C.Z. and Shih T.S.: Mater. Trans. 44 (2003) 995-1003.
  5. Tanigawa H., Sawahata A., Sokolov M.A., Enomoto M., Klueh R.L. and Kohyama A.: Mater. Trans. 48 (2007) 570-573.
  6. Chen F., Cui Z.S. and Chen S.J.: Mater. Sci. Eng. A 528 (2011) 5073-5080.
  7. Chen F., Cui Z.S., Sui D.S. and Fu B.: Mater. Sci. Eng. A 540 (2012) 46-54.
  8. Wang Y.P., Han C.J., Wang C. and Li S.K.: J. Mater. Sci. 46 (2011) 2922-2927.
  9. Chen S.J., Chen F. and Cu Z.S.: Die Mould Technol. 5 (2009) 38-40.
  10. Chen F., Cui Z.S., Liu J., Zhang X.X. and Chen W.: Model. Simul. Mater. Sci. Eng. 17 (2009) 075015.
  11. Gárlipp W., Cilense M. and Novaes Gomes S.I.: J. Mater. Process. Technol. 114 (2001) 71-74.
  12. Ryan N.D. and McQueen H.J.: J. Mater. Process. Technol. 36 (1993) 103-123.
  13. Starikov S.A., Kuznetsov A.R., Sagaradze V.V., Gornostyrev Yu.N., Pechenkin V.A. and Stepanov I.A.: Phys. Met. Metallogr. 113 (2012) 241-245.
  14. Xu T., Zheng L., Wang K. and Misra R.D.K.: Int. Mater. Rev. 58 (2013) 263-295.
  15. Yoo K.B., Kim J.H. and Heo N.H.: ISIJ Int. 50 (2010) 1702-1706.
  16. Kobayashi S., Maruyama T., Saito S., Tsurekawa S. and Watanabe T.: J. Mater. Sci. 49 (2014) 4007-4017.
  17. Liu X., Zhong Y.X., Ma Q.X. and Yuan C.L.: China Mech. Eng. 21 (2010) 603-606.
  18. Belyakov A., Miura H. and Sakai T.: Mater. Sci. Eng. A 255 (1998) 139-147.
  19. Luo X., Yang C.S., Kang Y.L. and Li J.H.: Chin. J. Eng. 38 (2016) 230-234.
  20. He X.L., Chu Y.Y., Zhang X.L., Yu Z.S., Li Q.P. and Yin X.G.: Acta Metall. Sin. 13 (1977) 235-245.
  21. Karlsson L., Nordén H. and Odelius H.: Acta Metall. 36 (1988) 1-12.
  22. Vorlicek V. and Flewitt P.E.J.: Acta Metall. Mater. 42 (1994) 3309-3320.
  23. Zhen L., Dong J.X., Zhang M.C. and Meng H.: Stanford Mater. 23 (2009) 67-70.
  24. Zhou C.Y., Sun Y. and Zhang G.D.: Spec. Steel. 27 (2006) 6-8.
  25. Hui W.J., Dong H., Wen Y.Q., Shi J. and Zhang X.Z.: Acta Metall. Sin. 40 (2004) 1274-1280.
  26. Muschik T., Hofmann S., Gust W. and Predel B.: Appl. Surf. Sci. 37 (1989) 439-455.
  27. Seah M.P. and Lea C.: Philos. Mag. 31 (1975) 627-645.
  28. Seah M.P. and Hondros E.D.: Proc. R. Soc. London, Ser. A 335 (1973) 191-212.
  29. Larere A., Guttmann M., Demoulin P. and Roques-Carmes C.: Acta Metall. 30 (1982) 685-693.
  30. Boutassouna D., Le Gall R. and Lefkaier I.K.: Surf. Rev. Lett. 23 (2016) 1650050.


© 2018 The Japan Institute of Metals and Materials
Comments to us :