Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.816-821
© 2018 The Japan Institute of Metals and Materials

A Novel Directional Solidification of TiAl-Based Alloys by Electromagnetic Cold Crucible Zone Melting Technology with Y2O3 Moulds

Hailong Zhang, Hongsheng Ding, Ruirun Chen, Qiang Wang, Jingjie Guo and Hengzhi Fu

National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China

In order to decrease mould contamination, a novel directional solidification process was developed for TiAl-based alloys, where an Y2O3 mould was incorporated into electromagnetic cold crucible (EMCC) zone melting technology. To determine the characteristics of this process, the macro/microstructures and mechanical properties of directionally solidified (DS) Ti-45Al-2Cr-2Nb ingots prepared by two kinds of directional solidification techniques, namely traditional graphite heating (control group) and EMCC heating, were extensively investigated using electromagnetic field and temperature field. Compared with the control group, this new technique can induce bigger electromagnetic force in the tangential direction, generate a more rapid heating and higher temperature gradient, and decrease the interaction between the mould and melt; however the heat transfer is altered to inclining outward owe to the lateral heat transfer. The DS sample prepared by this method can achieve finer columnar crystals growing toward the axis, α2/γ lamellae, and lower levels of contamination with regard to Y2O3 particles and oxygen. These are beneficial to improve room temperature fracture toughness and tensile properties.


(Received 2018/01/15; Accepted 2018/02/22; Published 2018/04/25)

Keywords: directional solidification, TiAl, Y2O3 mould, mechanical properties

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Chen G., Peng Y.B., Zheng G., Qi Z.X., Wang M.Z., Yu H.C., Dong C.L. and Liu C.T.: Nat. Mater. 15 (2016) 876-881.
  2. Kartavykh A.V., Kaloshkin S.D., Cherdyntsev V.V., Gorshenkov M.V., Sviridova T.A., Borisova Y.V., Senatov F.S. and Maksimkin A.V.: Inorg. Mater.: Appl. Res. 4 (2013) 36-45.
  3. Du Y.J., Shen J., Xiong Y.L., Liu Z.W., Zhao Q. and Fu H.Z.: JOM 66 (2014) 1914-1922.
  4. Zhou C.X., Zeng F.P., Lin B., Liu Y., Zhao K., Lu J.Z., Qiu C.Z., Li J.B. and He Y.H.: Mater. Trans. 57 (2016) 461-465.
  5. Kartavykh A.V., Tcherdyntsev V.V., Gorshenkov M.V. and Kaloshkin S.D.: J. Alloys Compd. 586 (2014) S180-S183.
  6. Lapin J. and Gabalcová Z.: Intemetallics 19 (2011) 797-804.
  7. Gao M., Cui R.J., Ma L.M., Zhang H.R., Tang X.X. and Zhang H.J.: J. Mater. Process. Technol. 211 (2011) 2004-2011.
  8. Zhang J.Q., Li Q.S., Song L.B., Ren H. and Wang Y.J.: Foundry eqpt. Technol. 6 (2012) 13-17.
  9. Q.L. Li: M.Phil. Dissertation, Northwestern Polytechnical University, 2007.
  10. Nie G., Ding H.S., Chen R.R., Guo J.J. and Fu H.Z.: Mater. Des. 39 (2012) 350-357.
  11. Lapin J., Ondru’s L. and Nazmy M.: Intermetallics 10 (2002) 1019-1031.
  12. Yang J.R., Chen R.R., Ding H.S., Guo J.J., Su Y.Q. and Fu H.Z.: J. Mater. Process. Technol. 213 (2013) 1355-1363.
  13. Chen R.R., Yang J.R., Ding H.S., Huang F., Su Y.Q., Guo J.J. and Fu H.Z.: J. Mater. Process. Technol. 212 (2012) 1934-1940.
  14. X. Xu: M.Phil. Dissertation, Northwestern Polytechnical University, 2005.
  15. Ding H.S., Wang Y.Z., Zhang H.L., Chen R.R., Guo J.J. and Fu H.Z.: Mater. Des. 86 (2015) 670-678.
  16. Cui R.J., Gao M., Zhang H. and Gong S.K.: J. Mater. Process. Technol. 210 (2010) 1190-1196.
  17. Lapin J., Gabalcová Z. and Pelachová T.: Intermetallics 19 (2011) 396-403.
  18. Ding H.S., Zhang H.L., Wang Q., Chen R.R., Guo J.J. and Fu H.Z.: Mater. Sci. Eng. A 703 (2017) 108-115.
  19. Zhang H.L., Ding H.S., Wang Q., Chen R.R. and Guo J.J.: J. Vacuum 148 (2018) 206-213.
  20. G. Nie: Ph.D. Dissertation, Harbin Institute of Technology, 2012.
  21. Ding X.F., Lin J.P., Zhang L.Q., Song X.P. and Chen G.L.: Mater. Des. 32 (2011) 395-400.


© 2018 The Japan Institute of Metals and Materials
Comments to us :