Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.811-815
© 2018 The Japan Institute of Metals and Materials

Comparison of the Photocatalytic Efficience for Cu and N Co-Doped TiO2 by Sol-Gel and Xerogel-Hydrothermal Methods

Cuiping Liu, Zhifeng Liu and Yuwen Zhu

School of Science, Tianjin Chengjian University, China

In this study, mesoporous Cu and N doped TiO2 crystals were synthesized with Cu and N doped titania by xerogel-hydrothermal treatment and sol-gel treatment. The characteristics of Cu and N doped TiO2 were investigated with XRD, UV-vis, XPS and N2 sorption analysis. The photocatalytic activity of samples was evaluated by the photocatalytic oxidation of acetone under ultraviolet light. The photocatalytic activity of the xerogel-hydrothermal modified Cu and N doped TiO2 was considerably higher than that of the sol-gel modified Cu and N doped TiO2. This enhanced photoactivity is related to the smaller particle sizes, bicrystalline, the smaller pores and the larger specific area.


(Received 2018/01/31; Accepted 2018/02/19; Published 2018/04/25)

Keywords: hydrothermal, photocatalytic, acetone, sol-gel

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Li D., Haneda H., Labhsetwar N.K., Hishita S. and Ohashi N.: Chem. Phys. Lett. 401 (2005) 579-584.
  2. Zhao Z., Sun Z., Zhao H., Zheng M., Du P., Zhao J. and Fan H.: J. Mater. Chem. 22 (2012) 21965-21971.
  3. He Z.M., Liu J., Miao J.W. and Liu B.: J. Mater. Chem. C 2 (2014) 1381-1385.
  4. Rui Y.C., Li Y.G., Zhang Q.H. and Wang H.Z.: CrystEngComm 15 (2013) 1651-1656.
  5. Kudo A., Fujita T., Lang X.Y., Chen L.Y. and Chen M.W.: Mater. Trans. 51 (2010) 1566-1569.
  6. Nasir M., Lei J.Y., Iqbal W. and Zhang J.L.: Appl. Surf. Sci. 364 (2016) 446-454.
  7. Eltermann M., Utt K., Lange S. and Jaaniso R.: Opt. Mater. 51 (2016) 24-30.
  8. Song K.X., Zhou J.H., Bao J.C. and Feng Y.Y.: J. Am. Ceram. Soc. 91 (2008) 1369-1371.
  9. Kim C.S., Shin J.W., Cho Y.H., Jiang H.D., Byun S.H. and Kim T.O.: Appl. Catal. A Gen. 455 (2013) 211-218.
  10. Yang P., Lu C., Hua N.P. and Du Y.K.: Mater. Lett. 57 (2002) 794-801.
  11. Gupta B., Melvin A.A., Matthews T., Dash S. and Tyagi A.K.: Renewable Sustainable Energy Rev. 58 (2016) 1366-1375.
  12. He K., Zhao G.L. and Han G.R.: CrystEngComm 16 (2014) 7881-7884.
  13. Zhou W.J., Liu X.Y., Cui J.J., Liu D., Li J., Jiang H.D., Wang J.Y. and Liu H.: Cryst. Eng. Comm. 13 (2011) 4557-4663.
  14. Lan T.B., Liu Y.B., Dou J., Hong Z.S. and Wei M.D.: Mater. Chem. 2 (2014) 1106-1107.
  15. Wang C.C. and Ying J.Y.: J. Mater. Chem. 11 (1999) 3113-3120.
  16. Zhang H.Z. and Banfield J.F.: J. Phys. Chem. B 104 (2000) 3481-3487.
  17. Gopal M., Moberly Chan W.J. and De Jonghe L.C.: J. Mater. Sci. 32 (1997) 6001-6008.
  18. Wang C., Li Q. and Wang R.D.: Mater. Lett. 58 (2004) 1424-1426.
  19. Yang G.D., Wang T., Yang B.L., Yan Z.F., Ding S.J. and Xiao T.C.: Appl. Surf. Sci. 287 (2013) 135-142.
  20. Truong Q.D., Le T.H., Liu J.Y., Chung C.C. and Ling Y.C.: Appl. Catal. A Gen. 437-438 (2012) 28-35.
  21. Asahi R., Morikawa T., Ohwaki T., Aoki K. and Taga Y.: Science 293 (2001) 269-271.


© 2018 The Japan Institute of Metals and Materials
Comments to us :