Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.805-810
© 2018 Japan Society of Powder and Powder Metallurgy

Effect of Shape Memory Heat Treatment on Microstructures and Mechanical Properties of Powder Metallurgy TiNi Shape Memory Alloy

Ryoichi Soba1, Yukiko Tanabe1, Takayuki Yonezawa2, Junko Umeda2 and Katsuyoshi Kondoh2

1R&D Center, Terumo Corporation, Ashigarakami-gun, Kanagawa 259-0151, Japan
2Joining and Welding Research Institute, Osaka University, Ibaraki 567-0047, Japan

The shape memory heat treatment effects on the microstructures and mechanical properties of TiNi shape memory alloys fabricated by powder metallurgy (PM) process were investigated in this study. Through the optimization of the shape memory heat treatment conditions, PM TiNi alloy showed a high plateau stress of 454 MPa and good shape recovery of 96.4% in 8% tensile strain applied via the heat treatment at 773 K for 10 min. A longtime heat treatment applied to PM TiNi alloys caused an increase of the amount of Ti3Ni4 precipitates in the TiNi matrix, and resulted in the relative decrease of Ni solid solution in the matrix which caused the decrease of the plateau stress.


(Received 2018/01/29; Accepted 2018/02/13; Published 2018/04/25)

Keywords: powder metallurgy, TiNi shape memory alloy, precipitation, shape memory heat treatment, martensitic transformation

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Wever D.J., Veldhuizen A.G., de Vries J., Busscher H.J., Uges D.R.A. and van Horn J.R.: Biomaterials 19 (1998) 761-769.
  2. Duerig T., Pelton A. and Stockel D.: Mater. Sci. Eng. 273-275 (1999) 149-160.
  3. Khalil-Allafi J., Ahmadi B.A. and Zare M.: Mater. Sci. Eng. 30 (2010) 1112-1117.
  4. Filip P., Lausmaa J., Musialek J. and Mazanec K.: Biomaterials 22 (2001) 2131-2138.
  5. Bertrand O.F., Rao S.V., Pancholy S., Jolly S.S., Rodés-Cabau J., Larose É., Costerousse O., Hamon M. and Mann T.: Cardiovascular Interventions 3 (2010) 1022-1031.
  6. Feldman D.N., Swaminathan R.V., Kaltenbach L.A., Baklanov D.V., Kim L.K., Wong S.C., Minutello R.M., Messenger J.C., Moussa I., Garratt K.N., Piana R.N., Hillegass W.B., Cohen M.G., Gilchrist I.C. and Rao S.V.: Circulation 127 (2013) 2295-2306.
  7. Louvard Y., Lefevre T., Allain A. and Morice M.C.: Catheter. Cardiovasc. Interv. 52 (2001) 181-187.
  8. Amin A.P., House J.A., Safley D.M., Chhatriwalla A.K., Giersiefen H., Bremer A., Hamon M., Baklanov D.V., Aluko A., Wohns D., Mathias D.W., Applegate R.A., Cohen D.J. and Marso S.P.: Cardiovascular Interventions 6 (2013) 827-834.
  9. Soba R., Tanabe Y., Yonezawa T., Umeda J. and Kondoh K.: J. Jpn. Soc. Powder Powder Metallurgy 64 (2017) 589-594.
  10. Otsuka K. and Ren X.: Prog. Mater. Sci. 50 (2005) 511-678.
  11. Tang W.: Metall. Mater. Trans. 28 (1997) 537-544.
  12. Shugo Y., Yamauchi K., Miyagawa R. and Honma T.: Bull. Res. Inst. Miner. Dress. Metall. (Tohoku Univ.) 38 (1982) 11-20.
  13. Khalil-Allafi J., Schmahl W.W., Deroche C., Sitepu H., Toebbens D.M. and Eggeler G.: Mater. Sci. Eng. A 378 (2004) 161-164.


© 2018 Japan Society of Powder and Powder Metallurgy
Comments to us :