Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.787-792
© 2018 The Japan Institute of Metals and Materials

Selective Leaching and Surface Properties of Cu-Al-Ni Shape Memory Alloys

Shih-Hang Chang, Chin Kuo and Jin-Lin Han

Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan

This study investigated the selective leaching, chemical compositions, and electrochemical properties of Cu-XAl-4Ni (X = 12.5, 13.0, and 13.5) shape memory alloys (SMAs). The selective leaching results showed that the Cu-XAl-4Ni SMAs released approximately 200 ppb of Cu ions, 200 ppb of Al ions, and 600 ppb of Ni ions after immersion in Ringer’s solution for 90 days. The low concentrations of Cu and Al ions stem from the oxidation of Cu and Al atoms near the surface of the Cu-XAl-4Ni SMAs to form Cu2O and Al2O3 films. The selective leaching properties of the Cu-XAl-4Ni SMAs were inferior to that of the TiNi SMA, which possessed a highly passive TiO2 film on the surface, but were much better than those of the TiNiCu and TiNiFe SMAs, whose TiO2 films were deteriorated by the formation of NiO, Cu2O, and Fe2O3 oxides. Cu-XAl-4Ni SMAs are potential candidates to serve as biomaterials, owing to their acceptable surface and selective leaching properties, high martensitic transformation temperatures, low cost, good machinability, and excellent electric and thermal conductivities.


(Received 2017/09/21; Accepted 2018/02/15; Published 2018/04/25)

Keywords: Cu-Al-Ni shape memory alloys, biomaterials, selective leaching, X-ray photoelectron spectroscopy

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Otsuka K. and Ren X.: Prog. Mater. Sci. 50 (2005) 511-678.
  2. Assad M., Lemieux N., Rivard C.H. and Yahia L.H.: Biomed. Mater. Eng. 9 (1999) 1-12.
  3. Es-Souni M., Es-Souni M. and Fischer-Brandies H.: Anal. Bioanal. Chem. 381 (2005) 557-567.
  4. Assad M., Chernyshov A., Leroux M.A. and Rivard C.H.: Biomed. Mater. Eng. 12 (2002) 225-237.
  5. Filip P., Lausmaa J., Musialek J. and Mazanec K.: Biomaterials 22 (2001) 2131-2138.
  6. Oshida Y., Sachdeva R.C.L. and Miyazaki S.: Biomed. Mater. Eng. 2 (1992) 51-69.
  7. Xiong J.Y., Li Y.C., Wang X.J., Hodgson P.D. and Wen C.E.: J. Mech. Behav. Biomed. Mater. 1 (2008) 269-273.
  8. Shabalovskaya S.A.: Biomed. Mater. Eng. 6 (1996) 267-289.
  9. Feninat F.El., Laroche G., Fiset M. and Mantovani D.: Adv. Eng. Mater. 4 (2002) 91-104.
  10. Takahashi H., Kinbara M., Sato N., Sasaki K., Sugawara S. and Endo Y.: Int. Immunopharmacol. 11 (2011) 1534-1540.
  11. D’Antò V., Eckhardt A., Hiller K.A., Spagnuolo G., Valletta R., Ambrosio L., Schmalz G. and Schweikl H.: Biomaterials 30 (2009) 1492-1501.
  12. Chu C.L., Chung C.Y. and Chu P.K.: Mater. Sci. Eng. A 417 (2006) 104-109.
  13. Wang R.M., Chu C.L., Hu T., Dong Y.S., Guo C., Sheng X.B., Lin P.H., Chung C.Y. and Chu P.K.: Appl. Surf. Sci. 253 (2007) 8507-8512.
  14. Chu C.L., Guo C., Sheng X.B., Dong Y.S., Lin P.H., Yeung K.W.K. and Chu P.K.: Acta Biomater. 5 (2009) 2238-2245.
  15. Espinar E., Llamas J.M., Michiardi A., Ginebra M.P. and Gil F.J.: J. Mater. Sci. Mater. Med. 22 (2011) 1119-1125.
  16. Abalos C., Paúl A., Endoza A., Solano E. and Gil F.J.: J. Mater. Sci. Mater. Med. 22 (2011) 2813-2821.
  17. Gil F.J., Espinar E., Llamas J.M., Manero J.M. and Ginebra M.P.: J. Mech. Behav. Biomed. Mater. 6 (2012) 113-119.
  18. Chang S.H. and Chiu W.C.: Appl. Surf. Sci. 324 (2015) 106-113.
  19. Chang S.H., Liou J.S. and Huang B.Y.: Mater. Tehnol. 51 (2017) 251-257.
  20. Scherngell H. and Kneissl A.C.: Acta Mater. 50 (2002) 327-341.
  21. Chang S.H.: Mater. Lett. 64 (2010) 93-95.
  22. Lojen G., Gojić M. and Anžel I.: J. Alloys Compd. 580 (2013) 497-505.
  23. Suresh N. and Ramamurty U.: J. Alloys Compd. 449 (2008) 113-118.
  24. Chang S.H.: Mater. Chem. Phys. 125 (2011) 358-363.
  25. Kato H., Stalmans R. and Van Humbeeck J.: Mater. Trans. 39 (1998) 378-386.
  26. Picornell C., Pons J. and Cesari E.: Mater. Trans. 45 (2004) 1679-1683.
  27. Nakata Y., Iizuka Y. and Ono T.: Mater. Trans. 57 (2016) 257-262.
  28. Čolić M., Rudolf R., Stamenković D., Anžel I., Vučević D., Jenko M., Lazić V. and Lojen G.: Acta Biomater. 6 (2010) 308-317.
  29. Čolić M., Tomić S., Rudolf R., Anžel I. and Lojen G.: J. Biomater. Appl. 25 (2010) 269-286.
  30. Rudolf R., Mehrabi K., Kneissl A.C., Bruncko M., Anžel I., Tomić S., Džopalic T. and Čolić M.: Int. J. Immunol. Stud. 1 (2010) 214-228.
  31. Chang S.H., Chen B.Y. and Lin J.X.: J. Appl. Biomater. Funct. Mater. 14 (2016) e59-e64.
  32. Zárubová N., Gemperle A. and Novak V.: Mater. Sci. Eng. A 222 (1997) 166-174.
  33. Zengin R. and Ceylan M.: Mater. Lett. 58 (2004) 55-59.
  34. Sarı U. and Aksoy İ.: J. Alloys Compd. 417 (2006) 138-142.


© 2018 The Japan Institute of Metals and Materials
Comments to us :