Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.771-778
© 2018 The Japan Institute of Metals and Materials

Deformation Microstructure Developed by Nanoindentation of a MAX Phase Ti2AlC

Yusuke Wada1, Nobuaki Sekido1, Takahito Ohmura2 and Kyosuke Yoshimi1

1Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2National Institute for Materials Science, Tsukuba 305-0047, Japan

Deformation microstructure that developed during nanoindentation of a MAX phase Ti2AlC was characterized by the scanning probe microscopy and the transmission electron microscopy. To investigate the plastic anisotropy, nanoindentation measurements were made on grains with the normal parallel to $\langle 33\bar{6}2\rangle $, $\langle 0001\rangle $, and $\langle 11\bar{2}0\rangle $. The basal slip, $\{ 0001\} \langle 11\bar{2}0\rangle $, was found to be predominant as the deformation mechanism for all the indentation directions. It was also indicated that, upon nanoindentation along $\langle 0001\rangle $ and $\langle 11\bar{2}0\rangle $, non-basal slips occurred underneath the indenter. The slip system of the non-basal dislocations was identified to be $(\bar{1}2\bar{1}6)[1\bar{2}11]$ by analyzing the dislocations. Furthermore, fine-scaled kink-bands were found to form underneath the residual impression. The formation of the kink-band was accompanied by delamination, i.e., micro-cracking along the basal plane, suggesting that the delamination plays an important role for kink-band formation in Ti2AlC.


(Received 2017/11/06; Accepted 2018/03/02; Published 2018/04/25)

Keywords: MAX phase, nanoindentation, deformation microstructure, kink band

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Barsoum M.W. and El-Raghy T.: Am. Sci. 89 (2001) 334-343.
  2. Barsoum M.W., Brodkin D. and El-Raghy T.: Scr. Mater. 36 (1997) 535-541.
  3. Barsoum M.W., Salama I., El-Raghy T., Golczewski J., Porter W.D., Wang H., Seifert H.J. and Aldinger F.: Metall. Mater. Trans. A 33 (2002) 2775-2779.
  4. Adamaki V., Minster T., Thomas T., Fourlaris G. and Bowen C.R.: Mater. Sci. Eng. A 667 (2016) 9-15.
  5. Radovic M., Barsoum M.W., Ganguly A., Zhen T., Finkel P., Kalidindi S.R. and Lara-Curzio E.: Acta Mater. 54 (2006) 2757-2767.
  6. Wang X.H. and Zhou Y.C.: Oxid. Met. 59 (2003) 303-320.
  7. Wang X.H. and Zhou Y.C.: J. Mater. Sci. Technol. 26 (2010) 385-416.
  8. Ramaseshan R., Kakitsuji A., Seshadri S.K., Nair N.G., Mabuchi H., Tsuda H., Matsui T. and Morii K.: Intermetallics 7 (1999) 571-577.
  9. Pietzka M.A. and Schuster J.C.: J. Phase Equilibria 15 (1994) 392-400.
  10. Barsoum M.W. and Radovic M.: Annu. Rev. Mater. Res. 41 (2011) 195-227.
  11. Sridharan S. and Nowotny H.: Int. J. Mater. Res. 74 (1983) 468-472.
  12. Barsoum M.W., Farber L. and El-Raghy T.: Metall. Mater. Trans. A 30 (1999) 1727-1738.
  13. Guitton A., Joulain A., Thilly L. and Tromas C.: Philos. Mag. 92 (2012) 4536-4546.
  14. Barsoum M.W. and El-Raghy T.: Metall. Mater. Trans. A 30 (1999) 363-369.
  15. Hu C., Sakka Y., Nishimura T., Guo S., Grasso S. and Tanaka H.: Sci. Technol. Adv. Mater. 12 (2011) 044603.
  16. Orowan E.: Nature 149 (1942) 643-644.
  17. Hess J.B. and Barrett C.S.: Metall. Trans. 185 (1949) 599-606.
  18. Basu S., Zhou A. and Barsoum M.W.: J. Struct. Geol. 31 (2009) 791-801.
  19. Hagihara K., Yokotani N. and Umakoshi Y.: Intermetallics 18 (2010) 267-276.
  20. Frank F.C. and Stroh A.N.: Proc. Phys. Soc. London, Sect. B 65 (1952) 811-821.
  21. Tromas C., Villechaise P., Gauthier-Brunet V. and Dubois S.: Philos. Mag. 91 (2011) 1265-1275.
  22. Doerner M.F. and Nix W.D.: J. Mater. Res. 1 (1986) 601-609.
  23. Oliver W.C. and Pharr G.M.: J. Mater. Res. 7 (1992) 1564-1583.
  24. Wada Y., Sekido N., Ohmura T. and Yoshimi K.: J. Japan Inst. Met. Mater., in press.
  25. Sekido K., Ohmura T., Zhang L., Hara T. and Tsuzaki K.: Mater. Sci. Eng. A 530 (2011) 396-401.
  26. Ohmura T. and Tsuzaki K.: J. Mater. Sci. 42 (2007) 1728-1732.
  27. Minor A.M., Syed Asif S.A., Shan Z., Stach E.A., Cyrankowski E., Wyrobek T.J. and Warren O.L.: Nat. Mater. 5 (2006) 697-702.
  28. Zhang L. and Ohmura T.: Phys. Rev. Lett. 112 (2014) 145504.
  29. A.C. Fischer-Cripps: Nanoindentation Third Edition, (Springer, New York, 2011) pp. 88-91.
  30. Molina-Aldareguia J.M., Emmerlich J., Palmquist J.P., Jansson U. and Hultman L.: Scr. Mater. 49 (2003) 155-160.
  31. J. Weertman and J.R. Weertman: Elementary Dislocation Theory, (The Macmillan Company, The United States of America, 1964) pp. 187-189.
  32. Farber L., Levin I. and Barsoum M.W.: Philos. Mag. Lett. 79 (1999) 163-170.
  33. K. Kishida, M. Higashi, S. Momono, N. Okamoto and H. Inui: Collected Abstracts of the 2017 Autumn Meeting of the Japan Inst. Metals (2017) p. 29.


© 2018 The Japan Institute of Metals and Materials
Comments to us :