Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.764-770
© 2018 The Japan Institute of Metals and Materials

Effects of Doping Nano-La2O3 on the Microstructure and Mechanical Properties of Mo-9Si-18B Alloys

Liangbin Chen1, Ran Wei2, Ke Tang1, Guojun Zhang1, 3, Feng Jiang1 and Jun Sun1

1State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, PR China
2School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
3School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, PR China

The refractory Mo-9Si-18B (at%) alloy doped with different mass fractions of nano-La2O3 were prepared by combining arc-melting, mechanical alloying and vacuum hot-pressing sintering techniques. The microstructures and mechanical properties of the alloys were systematically investigated. The results showed that the doped alloys presented finer grains than that of the non-doped alloys. Interestingly, most of the La2O3 particles dispersed in the grains interior rather than gathered in the grain boundaries by this combining process. This optimal microstructure had led to corresponding improvement in the compression strength (both at room temperature and 1200°C) and room temperature fracture toughness of the Mo-9Si-18B alloys. Among these alloys, the 0.6 mass% La2O3 doped alloys exhibited the best mechanical properties. The predominant strengthening mechanisms are particles dispersion strengthening and fine-grain strengthening. And the toughening mechanism mainly involves particle toughening.


(Received 2017/10/16; Accepted 2018/02/23; Published 2018/04/25)

Keywords: refractory alloys, sintering, mechanical properties, La2O3 particles, strengthening mechanism

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Lemberg J.A. and Ritchie R.O.: Adv. Mater. 24 (2012) 3445-3480.
  2. Sakidja R., Perepezko J.H., Kim S. and Sekido N.: Acta Mater. 56 (2008) 5223-5244.
  3. Kim W.Y., Tanaka H., Kim M.S. and Hanada S.: Mater. Sci. Eng. A 346 (2003) 65-74.
  4. Lemberg J.A., Middlemas M.R., Weingärtner T., Gludovatz B., Cochran J.K. and Ritchie R.O.: Intermetallics 20 (2012) 141-154.
  5. Liao J.H., Bon H.Y., Chao C.G. and Liu T.F.: Mater. Trans. 51 (2010) 810-817.
  6. Akinc M., Meyer M.K., Kramer M.J., Thom A.J., Huebsch J.J. and Cook B.: Mater. Sci. Eng. A 261 (1999) 16-23.
  7. Alur A.P., Chollacoop N. and Kumar K.S.: Acta Mater. 52 (2004) 5571-5587.
  8. Ito K., Kumagai M., Hayashi T. and Yamaguchi M.: Scr. Mater. 49 (2003) 285-290.
  9. M. Kumagai, K. Ito and M. Yamaguchi: MRS Proceedings, (Cambridge Univ Press, 2002).
  10. Majumdar S., Schliephake D., Gorr B., Christ H.J. and Heilmaier M.: Metall. Mater. Trans. A 44 (2013) 2243-2257.
  11. Ihara K., Ito K., Tanaka K. and Yamaguchi M.: Mater. Sci. Eng. A 329-331 (2002) 222-227.
  12. Yoshimi K., Nakatani S., Suda T., Hanada S. and Habazaki H.: Intermetallics 10 (2002) 407-414.
  13. Li B., Zhang G.j., Jiang F., Ren S., Liu G. and Sun J.: J. Alloys Comp. 609 (2014) 80-85.
  14. Ha S.H., Yoshimi K., Nakamura J., Kaneko T., Maruyama K., Tu R. and Goto T.: J. Alloys Comp. 594 (2014) 52-59.
  15. Abbasi A. and Shamanian M.: Mater. Sci. Eng. A 528 (2011) 3295-3301.
  16. Sakidja R., Perepezko J.H., Kim S. and Sekido N.: Acta Mater. 56 (2008) 5223-5244.
  17. Krüger M., Franz S., Saage H., Heilmaier M., Schneibel J.H., Jéhanno P., Böning M. and Kestler H.: Intermetallics 16 (2008) 933-941.
  18. Miller M.K., Kenik E.A., Mousa M.S., Russell K.F. and Bryhan A.J.: Scr. Mater. 46 (2002) 299-303.
  19. Miller M.K. and Bryhan A.J.: Mater. Sci. Eng. A 327 (2002) 80-83.
  20. Gunter I.M., Schneibel J.H. and Kruzic J.J.: Mater. Sci. Eng. A 458 (2007) 275-280.
  21. Saage H., Krüger M., Sturm D., Heilmaier M., Schneibel J.H., George E., Heatherly L., Somsen C., Eggeler G. and Yang Y.: Acta Mater. 57 (2009) 3895-3901.
  22. Liu G., Zhang G.J., Jiang F., Ding X.D., Sun Y.J., Sun J. and Ma E.: Nat. Mater. 12 (2013) 344-350.
  23. Park Y.H., Shan A. and Hashimoto H.: Mater. Trans. 43 (2002) 352-354.
  24. Ma C.L., Kasama A., Tanaka Y., Tanaka R., Mishima Y. and Hanada S.: Mater. Trans. 41 (2000) 719-726.
  25. Schneibel J.H., Kramer M., Ünal Ö. and Wright R.N.: Intermetallics 9 (2001) 25-31.
  26. Nunes C., Sakidja R., Dong Z. and Perepezko J.: Intermetallics 8 (2000) 327-337.
  27. Sturm D., Heilmaier M., Schneibel J.H., Jéhanno P., Skrotzki B. and Saage H.: Mater. Sci. Eng. A 463 (2007) 107-114.
  28. Zhang G.J., Dang Q., Kou H., Wang R.h., Liu G. and Sun J.: J. Alloys Comp. 577 (2013) S493-S498.
  29. Choe H., Chen D., Schneibel J. and Ritchie R.: Intermetallics 9 (2001) 319-329.
  30. Nieh T., Wang J. and Liu C.: Intermetallics 9 (2001) 73-79.
  31. Zhang G.J., Sun Y.J., Niu R.M., Sun J., Wie J.F., Zhao B.H. and Yang L.X.: Adv. Eng. Mater. 6 (2004) 943-948.
  32. Zhu A.W., Chen J. and Starke E.A.Jr.: Acta Mater. 48 (2000) 2239-2246.
  33. Zhu A.W. and Starke E.A.Jr.: Acta Mater. 47 (1999) 3263-3269.
  34. A. Kelly and R.B. Nicholson: Strengthening methods in crystals, (Elsevier, New York, 1971).
  35. Zhang G.J., Lin X.H., Wang R.H., Liu G. and Sun J.: Int. J. Refract. Met. Hard Mater. 29 (2011) 608-613.
  36. Yu J.L., Li Z.K., Zheng X., Zhang J.J., Liu H., Bai R. and Wang H.: Mater. Sci. Eng. A 532 (2012) 392-395.
  37. Kim W.Y., Tanaka H. and Hanada S.J.: Mater. Trans. 43 (2002) 1415-1418.
  38. Kawasaki M., Terence T. and Langdon G.: Mater. Trans. 49 (2008) 84-89.
  39. Yang F., Wang K.S., Hu P., He H.C., Kang X.Q., Wang H., Liu R.Z. and Volinsky A.A.: J. Alloys Comp. 593 (2014) 196-201.
  40. Chen H., Ma Q., Shao X., Ma J., Wang C. and Huang B.: Mater. Sci. Eng. A 592 (2014) 12-18.


© 2018 The Japan Institute of Metals and Materials
Comments to us :