Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.747-753
© 2018 The Mining and Materials Processing Institute of Japan

Modeling of Complete Stress-Strain Curves and Time-Dependent Behaviors of Rocks under Uniaxial Tension

Kimihiro Hashiba, Katsunori Fukui and Minami Kataoka

Department of Systems Innovation, the University of Tokyo, Tokyo 113-8656, Japan

Tensile stresses likely occur in the rock masses around large or intricately shaped caverns. Hydraulic fracturing for oil, gas, or geothermal development requires a deep understanding of crack extensions under tensile stress. Computer simulation is helpful for the estimation of such deformation and failure of in-situ rocks and requires a mechanical model representing complex rock behaviors under tension. The authors’ research group previously proposed the variable-compliance-type (VC) model for rocks and examined the model under compression. In this study, the applicability of the VC model was investigated under uniaxial tension. The close relation between the VC model and the microscopic failure mechanisms of crack extensions under uniaxial tension was clarified using the linear elastic fracture mechanics and the damage mechanics. Based on the relation, the VC model was modified to reproduce the deformation and failure under uniaxial tension. Then the model was validated by comparing the simulated and experimental results of complete stress-strain curves in both dry and wet conditions, loading-rate dependence, and creep deformation of various rocks under uniaxial tension. In addition, the applicability of the model to numerical simulation programs and the future subjects were discussed.


(Received 2017/11/29; Accepted 2018/02/06; Published 2018/04/25)

Keywords: uniaxial tension, mechanical model, complete stress-strain curve, loading-rate dependence, creep

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Diederichs M.S.: Rock Mech. Rock Eng. 36 (2003) 339-381.
  2. The SCR Geomechanics Group: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30 (1993) 1127-1134.
  3. Adachi J., Siebrits E., Peirce A. and Desroches J.: Int. J. Rock Mech. Min. Sci. 44 (2007) 739-757.
  4. Hashiba K., Okada T., Tani K., Shirasagi S., Hayano K., Nakamura T., Oikawa Y., Ono M., Shimamoto K., Yamada S., Wakabayashi N., Namikawa T. and Nishikane Y.: Geotech. Test. J. 40 (2017) 335-344.
  5. Vallejos J.A., Salinas J.M., Delonca A. and Ivars D.M.: Int. J. Geomech. 17 (2017) 06016030.
  6. Xu T., Tang C.-A. and Zhao J.: Int. J. Geomech. 12 (2012) 147-159.
  7. Zuo Y., Xu T., Zhang Y., Zhang Y., Li S., Zhao G. and Chen C.: Int. J. Geomech. 12 (2012) 471-483.
  8. Lisjak A. and Grasselli G.: J. Rock Mech. Geotech. Eng. 6 (2014) 301-314.
  9. Hillerborg A., Modéer M. and Petersson P.-E.: Cement Concr. Res. 6 (1976) 773-781.
  10. Elices M., Guinea G.V., Gómez J. and Planas J.: Eng. Fract. Mech. 69 (2002) 137-163.
  11. Sato K. and Hashida T.: Pure Appl. Geophys. 163 (2006) 1073-1089.
  12. Mahabadi O.K., Lisjak A., Munjiza A. and Grasselli G.: Int. J. Geomech. 12 (2012) 676-688.
  13. Kazerani T. and Zhao J.: Rock Mech. Rock Eng. 47 (2014) 435-452.
  14. Gui Y., Bui H.H. and Kodikara J.: Comput. Geotech. 66 (2015) 142-157.
  15. Okubo S. and Fukui K.: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33 (1996) 549-556.
  16. Hashiba K. and Fukui K.: Rock Mech. Rock Eng. 48 (2015) 1751-1761.
  17. Chugh Y.P.: Trans. Soc. Min. Eng., AIME 256 (1974) 259-264.
  18. Zhao B., Liu D. and Dong Q.: J. Rock Mech. Geotech. Eng. 3 (2011) 438-444.
  19. Li H., Li J., Liu B., Li J., Li S. and Xia X.: Rock Mech. Rock Eng. 46 (2013) 1247-1254.
  20. Okubo S. and Fukui K.: Rock Mech. Rock Eng. 39 (2006) 233-253.
  21. Hashiba K. and Fukui K.: Rock Mech. Rock Eng. 49 (2016) 2569-2580.
  22. K. Hashiba, K. Fukui and S. Okubo: Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium (2012) No. 12-162.
  23. Japan Nuclear Cycle Development Institute: H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 2 Repository Design and Engineering Technology, (Japan Nuclear Cycle Development Institute, Ibaraki, 2000) Appendix D.2.1.
  24. Hashiba K. and Fukui K.: Journal of MMIJ 130 (2014) 146-154.
  25. T. Yokobori: An Interdisciplinary Approach to Fracture and Strength of Solids, (Wolters-Noordhoff Scientific Publications Ltd., Groningen, 1968) Chapter 3.
  26. A.S. Krausz and H. Eyring: Deformation Kinetics, (John Wiley & Sons, New York, 1975) Chapter 2.
  27. Hashiba K. and Fukui K.: Rock Mech. Rock Eng. 48 (2015) 859-865.
  28. Ouchterlony F.: SM Arch. 7 (1982) 131-211.
  29. Okubo S., Shin K. and Nishimatsu Y.: J. Soc. Mater. Sci., Jpn. 33 (1984) 882-887.
  30. G.C. Sih: Handbook of Stress-intensity Factors, (Lehigh University, Bethlehem, 1973).
  31. S. Murakami: Continuum Damage Mechanics, (Springer, Dordrecht, 2012).
  32. Fukui K., Okubo S. and Iwano K.: Doboku Gakkai Ronbunsyu 729 (2003) 59-71.
  33. Okubo S. and Nishimatsu Y.: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22 (1985) 323-330.
  34. Okubo S., Nishimatsu Y. and Fukui K.: Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28 (1991) 77-82.
  35. Wang Q.Y., Zhu W.C., Xu T., Niu L.L. and Wei J.: Int. J. Geomech. 17 (2017) 04016044.


© 2018 The Mining and Materials Processing Institute of Japan
Comments to us :