Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.734-740
© 2018 The Japan Institute of Metals and Materials

Effect of Heat Treatment within Alpha/Beta Dual-Phase Field on the Structure and Tensile Properties of Binary Ti-Mo Alloys

Yu-Po Peng, Chien-Ping Ju and Jiin-Huey Chern Lin

Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 70101, Taiwan, ROC

The present study investigated the effect of heat treatment within the alpha (α)/beta (β) dual-phase field on the structure and tensile properties of Ti-(1.5-9.5) mass% Mo alloys. The alloys were prepared using an arc-melting vacuum-pressure type casting system. The cast alloys were heat-treated at 700, 750 and 800°C in vacuum for 30 minutes followed by quenching in ice water. The X-ray diffraction (XRD) results indicated that beta (β) phase intensities increased while α/alpha prime (α′) intensities decreased with increased heat treatment temperature (HTT) and Mo concentration. The β phase was observed to dominate the 800°C-treated Ti-9.5Mo alloy, while the highest alpha double prime (α′′) phase content was observed in the 800°C-treated Ti-7.5Mo alloy. Both optical and scanning electron microscopy indicated that a relatively coarse α platelet was always observed in Ti-1.5Mo. A fine, uniformly-distributed acicular microstructure was observed in Ti-7.5Mo, while an equi-axed β granular microstructure was clearly seen in Ti-9.5Mo. The tensile properties were found sensitive to the HTT and Mo concentration. When heat-treated at 700°C, the yield strength (YS) and ultimate tensile strength (UTS) increased while the elongation generally decreased with Mo concentration. The highest YS and UTS were found in Ti-7.5Mo and Ti-9.5Mo. When heat-treated at 750°C, the strength of Ti-5.5Mo was improved without reducing elongation. With Mo concentration increased to 7.5% or higher, the elongation further increased while the strength maintained a similar level. When treated at 800°C, the YS of Ti-3.5Mo, Ti-5.5Mo and Ti-7.5Mo maintained a lower level than Ti-1.5Mo and Ti-9.5Mo. A fully satisfactory interpretation for the tensile properties and their relationships to the complicated microstructures might not be a simple task due to several different factors simultaneously involved, yet practically it is interesting to note that selected alloys heat-treated within the dual-phase field demonstrated quite promising overall mechanical properties.


(Received 2017/12/04; Accepted 2018/02/19; Published 2018/04/25)

Keywords: titanium alloy, titanium-molybdenum alloy, α/β dual-phase

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Cardoso F.F., Ferrandini P.L., Lopes E.S.N., Cremasco A. and Caram R.: J. Mech. Behav. Biomed. Mater. 32 (2014) 31-38.
  2. Chen Y.Y., Xu L.J., Liu Z.G., Kong F.T. and Chen Z.Y.: Trans. Nonferrous Met. Soc. China 16 (2006) s824-s828.
  3. Niinomi M.: Mater. Sci. Eng. A 243 (1998) 231-236.
  4. Niinomi M.: Biomaterials 24 (2003) 2673-2683.
  5. Niinomi M.: J. Mech. Behav. Biomed. Mater. 1 (2008) 30-42.
  6. Chung C.C., Lee J.W., Ju C.P. and Lin J.H.C.: Adv. Eng. Mater. 16 (2014) 376-380.
  7. Banerjee D. and Williams J.C.: Acta Mater. 61 (2013) 844-879.
  8. Kuroda P.A.B., Buzalaf M.A.R. and Grandini C.R.: Mater. Sci. Eng. C 67 (2016) 511-515.
  9. Long M. and Rack H.J.: Biomaterials 19 (1998) 1621-1639.
  10. Ho W.F.: J. Med. Biol. Eng. 28 (2008) 47-51.
  11. Huckstep R.L.: Aust. N. Z. J. Surg. 47 (1977) 344-353.
  12. van Noort R.: J. Mater. Sci. 22 (1987) 3801-3811.
  13. Domingo J.L.: Biol. Trace Elem. Res. 88 (2002) 97-112.
  14. Perl D.P. and Brody A.R.: Science 208 (1980) 297-299.
  15. Rao S., Ushida T., Tateishi T., Okazaki Y. and Asao S.: Biomed. Mater. Eng. 6 (1996) 79-86.
  16. Walker P.R., Leblanc J. and Sikorska M.: Biochemistry 28 (1989) 3911-3915.
  17. Zysset P.K., Guo X.E., Hoffler C.E., Moore K.E. and Goldstein S.A.: J. Biomech. 32 (1999) 1005-1012.
  18. Geetha M., Singh A.K., Asokamani R. and Gogia A.K.: Prog. Mater. Sci. 54 (2009) 397-425.
  19. Niinomi M. and Nakai M.: Int. J. Biomater. 2011 (2011) 1-10.
  20. Mantripragada V.P., Lecka-Czernik B., Ebraheim N.A. and Jayasuriya A.C.: J. Biomed. Mater. Res. A 101 (2013) 3349-3364.
  21. Mohammed M.T., Khan Z.A. and Siddiquee A.N.: Int. J. Chem., Nucl.: Metall. Eng. 8 (2014) 726-731.
  22. Niinomi M., Nakai M. and Hieda J.: Acta Biomater. 8 (2012) 3888-3903.
  23. Zhao D., Chang K., Ebel T., Qian M., Willumeit R., Yan M. and Pyczak F.: J. Mech. Behav. Biomed. Mater. 28 (2013) 171-182.
  24. Ho W.F., Ju C.P. and Lin J.H.C.: Biomaterials 20 (1999) 2115-2122.
  25. Sun J., Yao Q., Xing H. and Guo W.Y.: J. Phys. Condens. Matter 19 (2007) 1-8.
  26. Lin D.J., Chuang C.C., Lin J.H.C., Lee J.W., Ju C.P. and Yin H.S.: Biomaterials 28 (2007) 2582-2589.
  27. Jiao Y., Huang L.J., Geng L., Li X.T., Gao Y.N., Qian M.F. and Zhang R.: Mater. Sci. Eng. A 701 (2017) 359-369.
  28. Lu J.W., Zhao Y.Q., Ge P. and Niu H.Z.: Mater. Charact. 84 (2013) 105-111.
  29. “Methods of making molybdenum titanium sputtering plates and targets”. United States Patent Application Publication., (accessed 2018-03-13).
  30. S.A. David and G.M. Slaughter: International Conference on WELDING TECHNOLOGY for ENERGY APPLICATIONS, (American Welding Society, Gatlinburg, 1982) pp. 313-329.
  31. Baker C.: Met. Sci. J. 5 (1971) 92-100.
  32. Brown A.R.G., Clark D., Eastabrook J. and Jepson K.S.: Nature 201 (1964) 914-915.
  33. Bagariatskii I.A., Nosova G.I. and Tagunova T.V.: Sov. Phys. Dokl. (1958) 1014-1018.
  34. Zhang W.D., Liu Y., Wu H., Song M., Zhang T.Y., Lan X.D. and Yao T.H.: Mater. Charact. 106 (2015) 302-307.


© 2018 The Japan Institute of Metals and Materials
Comments to us :