Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.717-723
© 2018 The Japan Institute of Metals and Materials

Effect of Ag Addition to Zn22 mass%Al-2 mass%Cu Alloy on the Four-Phase Reaction η + ε → α + τ′

H.J. Dorantes-Rosales, V.M. López-Hirata, Felipe Hernández-Santiago, M.L. Saucedo-Muñoz and Ana María Paniagua-Mercado

Instituto Politécnico Nacional, ESIQIE-ESFM, Ciudad de México, 07300, México

The effect of Ag additions to the four-phase, η + ε → α + τ′, was studied experimental and thermodynamically using Zn-22 mass%Al-2 mass%Cu base alloys with four Ag contents from 0 to about 4 mass% Ag. SEM and XRD results indicated the presence of the τ′ phase decreased as the Ag content increased for the aged alloys which can be attributed to the stabilization of the ε phase because of its increase in Ag content which is in agreement with Thermo-Calc results. The Ag addition also promoted a slowest decrease in hardness in the aging curves at 200°C which can be attributed to the slowest diffusion process for the quaternary alloy.


(Received 2017/11/17; Accepted 2018/02/13; Published 2018/04/25)

Keywords: Ag additions, Zn22 mass%Al-2 mass%Cu alloy, four-phase reaction, thermodynamic stability, aging curves

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. P.A.R. Findlay: Proceedings of the Institution of Mechanical Engineers (Mechanical Enginerring Publication Ltd., UK, 1957) pp. 1013-1024.
  2. E. Gervais, H. Levert and M. Bess: “Development of a Family of Zinc Base Foundry Alloys,” 84th Casting Congress and Exposition (American Foundrymen’s Society, St. Louis, Missouri, 1980) pp. 21-25.
  3. Apelian D., Paliwal M. and Herrschaft D.C.: J. Met. 33 (1981) 12-20.
  4. Savaskan T. and Murphy S.: Wear 116 (1987) 211-224.
  5. Aashuri H., Razavimanesh A., Kolahi A. and Mohiedin M.: Mater. Sci. Eng. A 333 (2002) 115-122.
  6. Savaşkan T. and Murphy S.: Mater. Sci. Technol. 6 (1990) 695-704.
  7. Ciach R., Krol J. and Wegrzyn-Tasior K.: Bull. Acad. Polon. Sci. 371 (1969) 13-20.
  8. Mykura N., Zhu Y.H. and Murphy S.: Can. Metall. Q. 25 (1986) 151-159.
  9. Durman M. and Murphy S.: J. Mater. Sci. 32 (1997) 1603-1611.
  10. Dorantes-Rosales H.J., Lopez-Hirata V.M., Palmerin-Moreno J., Cayetano-Castro N. and Saucedo-Muñoz M.L.: Mater. Trans. JIM 48 (2007) 2791-2794.
  11. Zhang L.M., Chen M.L. and Yan C.K.: J. Mater. Sci. Lett. 17 (1998) 1903-1905.
  12. Murphy S.: Met. Sci. 9 (1975) 163-168.
  13. Dorantes-Rosales H.J., López-Hirata V.M. and Zhu Y.H.: Mater. Sci. Eng. 271 (1999) 366-370.
  14. Dorantes-Rosales H.J., López-Hirata V.M., Moreno-Palmerin J., Cayetano-Castro N., Saucedo-Muñoz M.L. and Torres-Castillo A.: Mater. Trans. 48 (2007) 2791-2794.
  15. Casolco S., Negrete J. and Torres Villaseñor G.: Mater. Charact. 51 (2003) 63-67.
  16. Casolco S., Lopez Parra M. and Torres Villaseñor G.: J. Mater. Process. Technol. 174 (2006) 389-393.
  17. Flores-Ramos A., Dorantes-Rosales H.J., López-Hirata V.M., Hernández-Santiago F., González-Velazquez J.L., Torres-Castillo A. and Rivas-López D.I.: Rev. Metal. 50 (2014) e026.
  18. Semionov A.A. and Aleksakhin I.A.: Metallovedenie I Termicheskaya Obrabotka Metallov. 3 (1959) 48-51.
  19. Thermo-Calc software, SSOL5, Version 2017a, 2017.


© 2018 The Japan Institute of Metals and Materials
Comments to us :