Materials Transactions Online

Materials Transactions, Vol.59 No.05 (2018) pp.712-716
© 2018 The Japan Institute of Metals and Materials

Martensitic Transformation of Retained Austenite in Ferrite Matrix for Low Alloy Steel

Takayuki Yamashita1, Norimitsu Koga2 and Osamu Umezawa2

1Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan
2Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan

Martensitic transformation behavior in low-alloy transformation-induced plasticity steels has been studied at 293 K and 193 K. The as-received austenite precipitated in the ferrite matrix satisfied the Kurdjumov-Sachs orientation relationship with the ferrite matrix. The transformed martensite in the ferrite matrix was detected and it commonly exhibited the same orientation as the ferrite matrix. The martensitic transformation was independent of the selection of variant by stress accommodation. Thus, the transformed martensite variant was chosen predominantly to reduce interfacial energy. The transformed martensite may contribute to work-hardening in the ferrite matrix as a harder phase. Further, the transformed martensite at ferrite grain boundaries was due to stress accommodation. The variant achieving the highest Schmid factor in individual austenite was predominantly chosen to introduce slip deformation.


(Received 2017/11/01; Accepted 2018/02/02; Published 2018/04/25)

Keywords: martensitic phase transformation, electron backscattering diffraction, Kurdjumov-Sachs orientation relationship

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Takahashi: Nippon Steel Technical Report 88 (2003) 2-7.
  2. Sugimoto K., Kobayashi M. and Hashimoto S.: Metall. Trans. A 23 (1992) 3085-3091.
  3. Sugimoto K., Misu M., Kobayashi M. and Shirasawa H.: ISIJ Int. 33 (1993) 775-782.
  4. Itami A., Takahashi M. and Ushioda K.: ISIJ Int. 35 (1995) 1121-1127.
  5. Tirumalasetty G.K., van Huis M.A., Kwakernaak C., Sietsma J., Sloof W.G. and Zandbergen H.W.: Acta Mater. 60 (2012) 1311-1321.
  6. Patel J.R. and Cohen M.: Acta Metall. 1 (1953) 531-538.
  7. Miyamoto G., Iwata N., Takayama N. and Furuhara T.: Acta Mater. 60 (2012) 1139-1148.
  8. Kurdjumov G. and Sachs G.: Ztsch. Phy. 64 (1930) 325-343.
  9. Morito S., Tanaka H., Konishi R., Furuhara T. and Maki T.: Acta Mater. 51 (2003) 1789-1799.
  10. Takaki S., Fukunaga K., Syarif J. and Tsuchiyama T.: Mater. Trans. 45 (2004) 2245-2251.
  11. Matsuoka Y., Iwasaki T., Nakada N., Tsuchiyama T. and Takaki S.: ISIJ Int. 53 (2013) 1224-1230.
  12. Cheng L., Bottger A., de Keijser Th.H. and Mittemeijer E.J.: Scr. Metall. Mater. 24 (1990) 509-514.
  13. Furuhara T., Kawata H., Morito S., Miyamoto G. and Maki T.: Metall. Mater. Trans. A 39 (2008) 1003-1013.
  14. Tomota Y., Gong W., Harjo S. and Shinozaki T.: Scr. Mater. 133 (2017) 79-82.
  15. Shinozaki T., Tomota Y., Fukino T. and Suzuki T.: ISIJ Int. 57 (2017) 533-539.
  16. Nakada N., Tsuchiyama T., Takaki S. and Hashizume S.: ISIJ Int. 47 (2007) 1527-1532.


© 2018 The Japan Institute of Metals and Materials
Comments to us :