Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.685-689
© 2018 The Japan Institute of Metals and Materials

Microstructure and High Temperature Charge-Discharge Characteristics of 3D Additive Manufacturing Produced Mg-Ni Anode

Yen-Ting Chen, Fei-Yi Hung, Truan-Sheng Lui and Huey-Pyng Tan

Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan

This study applied a 3D additive manufacturing technique to produce a stable and high performance Mg-Ni alloy anode for lithium ion batteries. This 3D process used Mg-Ni powders to printed two layers on copper foil to obtain the Mg-Ni anodes directly, the 3D printed anodes have not need the traditional stir-slurry, coating and baking processes, and process the performances of high efficiency and low coat. Experiment results show that Mg2Ni, MgNi2 and Mg2Cu intermetallic compounds (IMC) are benefit for 3D printed anode, the anode can slowly form a dense and thick SEI layer at 55°C high temperature charge-discharge; therefore, a better capacity than at 25°C can be achieved. The 85°C charge-discharge environment makes the volume expansion effect serious, which results in capacity decay slightly. The presented high temperature charge-discharge capacities are higher than that of the commercial lithium battery, demonstrate that 3D additive manufacturing can fabricate the novel alloy electrodes simply and quickly, and that 3D Mg-Ni anodes are very suitable for today’s high-end electronic products.

[doi:10.2320/matertrans.M2017348]

(Received 2017/11/10; Accepted 2018/01/17; Published 2018/03/25)

Keywords: 3D printing, additive manufacturing, Mg battery

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Zhang W.J.: J. Power Sources 196 (2011) 13-24.
  2. Yuasa M., Huang X.S., Suzuki K., Mabuchi M. and Chino Y.: Mater. Trans. 55 (2014) 1202-1207.
  3. Nitta N. and Yushin G.: Part. Part. Syst. Charact. 31 (2014) 317-336.
  4. Li W.J., Hirayama M., Suzuki K. and Kanno R.: Mater. Trans. 57 (2016) 549-552.
  5. Shi Z., Liu M.L., Naik D. and Gole J.L.: J. Power Sources 92 [1-2] (2001), 70-80.
  6. Kim H., Park B., Sohn H.J. and Kang T.: J. Power Sources 90 (2000) 59-63.
  7. Chen K.J., Hung F.Y., Lui T.S. and Xiao R.S.: J. Nanomater. 2013 (2013) 638953.
  8. Wu C.H., Hung F.Y., Lui T.S. and Chen L.H.: Surf. Eng. 31 (2015) 173-178.
  9. Kimura T. and Nakamoto T.: Mater. Trans. 58 (2017) 799-805.
  10. Olakanmi E.O.: J. Mater. Process. Technol. 213 (2013) 1387-1405.
  11. Olakanmi E.O., Cochrane R.F. and Dalgarno K.W.: Prog. Mater. Sci. 74 (2015) 401-477.
  12. Chen Y.T., Hung F.Y., Lui T.S. and Hong J.Z.: Mater. Trans. 58 (2017) 525-529.
  13. McDowell M.T., Lee S.W., Nix W.D. and Cui Y.: Adv. Mater. 25 (2013) 4966-4984.
  14. Galinski M., Lewandowski A. and Stepniak I.: Electrochim. Acta 51 (2006) 5567-5580.
  15. Guidotti R.A. and Masset P.J.: J. Power Sources 183 (2008) 388-398.
  16. Plylahan N., Kerner M., Lim D.H., Matic A. and Johansson P.: Electrochim. Acta 216 (2016) 24-34.
  17. Pinson M.B. and Baznt M.Z.: J. Electrochem. Soc. 160 (2013) A243-A250.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp