Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.679-684
© 2018 The Japan Institute of Metals and Materials

Magnetostrictive Fe-Ga Wires for Application in the High-Temperature Waveguide Device

Jiheng Li, Mingming Li, Xing Mu, Xiaoqian Bao and Xuexu Gao

State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, PR China

(Fe83Ga17)99.4B0.6 wires with 0.5 mm diameter were prepared by hot forging, rolling and combining hot and cold drawing. Strong 〈110〉 fiber texture was obtained in the as-drawn and annealed wires by alternating current with short time. Compared with the fracture elongation of about 0.1% in the as-drawn wire, the property increased to 16.1% in the annealed wire. The Young’s modulus of annealed wire was up to 174.3 GPa. In the annealed wires, the maximum twist angle of 206′′/cm and magnetostriction λ of −48 ppm was achieved respectively. The obvious voltage signals of the torsional wave could be detected up to 400°C in the annealed wire, which was attributed to the high Curie temperature and highly thermal-stable magnetic properties of the Fe-Ga alloy. The linear downward trend of the velocity of the torsional wave was observed from room temperature to around 250°C. The results indicate that (Fe83Ga17)99.4B0.6 wire is suitable for the high-temperature waveguide device.


(Received 2017/12/05; Accepted 2018/01/15; Published 2018/03/25)

Keywords: magnetostriction, Fe-Ga alloy, Wiedemann effect, magnetostrictive displacement sensor

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Wiedemann G.: Lehre von der Elektrizität. 3 (1883) 680.
  2. Van der Burgt C.M.: Philips Res. Rep. 8 (1953) 91.
  3. Lewis J.A.: Quart. Appl. Math. 20 (1962) 13.
  4. Calkins F.T., Flatau A.B. and Dapino M.J.: J. Intell. Mater. Syst. Struct. 18 (2007) 1057.
  5. Fernando S., José M.M. and Antonio R.J.: IEEE Trans. Instrum. Meas. 3 (2009) 722.
  6. H.F. Liu, Z.Y. Jia and F.J. Wang: Proc. IEEE Intern. Confer. Mech. Automation, 2011:1098.
  7. Li M.M., Li J.H., Bao X.Q., Mu X. and Gao X.X.: Mater. Des. 135 (2017) 197.
  8. Borodin V.I., Ostanin V.V. and Zhakov S.V.: Phys. Met. Metallogr. 56 (1983) 96.
  9. McKnight G.P. and Carman G.P.: Mater. Trans. 43 (2002) 1008.
  10. Lázpita P., Chernenko V.A., Barandiarán J.M., Gutiérrez J., Hosoda H. and Rodríguez-Velamazán J.A.: Mater. Trans. 54 (2013) 1535.
  11. Clark A.E., Restorff J.B., Wun-Fogle M., Lograsso T.A. and Schlagel D.L.: IEEE Trans. Magn. 36 (2000) 323.
  12. Guruswamy S., Srisukhumbowornchai N., Clark A.E., Restorff J. and Wun-Fogle M.: Scr. Mater. 43 (2000) 239.
  13. Clark A.E., Hathaway K.B., Wun-Fogle M., Restorff J.B., Lograsso T.A., Keppens V.M., Petculescu G. and Taylor R.A.: J. Appl. Phys. 93 (2003) 8621.
  14. Hori S., Okazaki T., Furuya Y., Simada M., Yokoyama M. and Nakamura M.: Mater. Trans. 53 (2012) 963.
  15. Na S.M. and Flatau A.B.: J. Appl. Phys. 103 (2008) 07D304.
  16. Li J.H., Gao X.X., Zhu J., Li J. and Zhang M.C.: J. Alloys Compd. 484 (2009) 203.
  17. Nolting A.E. and Summers E.: J. Mater. Sci. 50 (2015) 5136.
  18. Huang M., Lograsso T.A., Clark A.E., Restorff J.B. and Wun-Fogle M.: J. Appl. Phys. 103 (2008) 07B314.
  19. Bormio-Nunes C., dos Santos C.T., Dias M.B., Doerr M., Granovsky S. and Loewenhaupt M.: J. Alloys Compd. 539 (2012) 226.
  20. Bormio-Nunes C., dos Santos C.T., Leandro I.F., Turtelli R.S., Grossinger R. and Atif M.: J. Appl. Phys. 109 (2011) 07A934.
  21. Li J.H., Gao X.X., Zhu J., Bao X.Q., Xia T. and Zhang M.C.: Scr. Mater. 63 (2010) 246.
  22. Sun A.L., Liu J.H. and Jiang C.B.: J. Mater. Sci. 49 (2014) 4565.
  23. Zhao Y.L., Li J.H., Bao X.Q., Mu X. and Gao X.X.: Scr. Mater. 141 (2017) 80.
  24. Chopra H.D. and Wuttig M.: Nature 521 (2015) 340.
  25. Dillamore I.L., Smith C.J.E. and Watson T.W.: Met. Sci. J. 1 (1967) 49.
  26. Shen R., Lu Y., Feng Z.S., Yang B.C. and Cao K.: J. Fun. Mater. 40 (2009) 918 (in Chinese).
  27. Xia T., Gao X.X., Li J.H. and Zhang Y.F.: J. Mag. Mater. Devices 39 (2008) 21 (in Chinese).
  28. Wang B.W., Xie X.L., Zhang L.Y., Li Y.F. and Zheng W.D.: Chin. J. Sci. Instru. 38 (2017) 813 (in Chinese).
  29. Li J.H., Gao X.X., Zhu J., Bao X.Q., Cheng L. and Xie J.X.: Chin. Phys. B 21 (2012) 087501.
  30. Fromy M.E.: J. Phys. Radium 7 (1926) 13.
  31. Zhakov S.V., Borodin V.I. and Ostanin V.V.: Phys. Met. Metallogr. 57 (1984) 36.
  32. Yamamoto M.: Sci. Rep. Tohoku Univ. 10 (1958) 219.
  33. Ma T.Y., Gou J.M., Hu S.S., Liu X.L., Wu C., Ren S., Zhao H., Xiao A.D., Jiang C.B., Ren X.B. and Yan M.: Nat. Commun. 8 (2017) 13937.


© 2018 The Japan Institute of Metals and Materials
Comments to us :