Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.674-678
© 2018 The Japan Institute of Metals and Materials

Pseudo-Superplastic Characteristics of ZK60 Alloy with Fibrous Microstructure

Cheng-Yu Wang1, Jian-Yih Wang2, Akhmd Saufan2 and Yen-Pei Fu2

1Department of Materials Science and Engineering, National Chao Tung University, 30010, Hsin-Chu, Taiwan
2Department of Materials Science and Engineering, National Dong Hwa University, 97401, Hualien, Taiwan

The superplasticity of ZK60 alloy was investigated after thermomechanical treatments (combination of rolling at 473 K and 673 K). ZK60 alloy, with an equiaxial grains microstructure (average grain size 2.6 µm), showed a maximum elongation of 865.2% with the strain rate 1 × 10−4 s−1 under high temperature tensile test at 573 K. Surprisingly, hot-rolled ZK60 samples with fibrous microstructure also displayed pseudo-superplastic behavior with an elongation of 535.2% at the same temperature. Microstructures indicated that the hot-rolled samples with elongated grains exhibited dynamic recovery and recrystallization during high temperature deformation, transforming the fibrous to fine-grained crystals, and thus retaining pseudo-superplastic behavior.

[doi:10.2320/matertrans.M2017360]

(Received 2017/11/24; Accepted 2018/01/10; Published 2018/03/25)

Keywords: ZK60 alloys, superplasticity, dynamic recovery, dynamic recrystallization, microstructure

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Aghion E. and Bronfin B.: Mater. Sci. Forum 350-351 (2000) 19-30.
  2. Nishikawa Y. and Takara A.: Mater. Sci. Forum 426-432 (2003) 569-574.
  3. Reed-Hill R.E. and Robertson W.D.: Acta Mater. 5 (1957) 728-737.
  4. Chang T.C., Wang J.Y., Ming O.C. and Lee S.: J. Mater. Process. Technol. 140 (2003) 588-591.
  5. Zhang Q. L., Lu C., Zhu Y.P. and Ding W.J.: Chin. J. Nonferrous Met. 14 (2004) 391-397.
  6. Kawasaki M. and Langdon T.G.: J. Mater Sci. 51 (2016) 19-32.
  7. Valiev R.Z., Islamgaliev R.K. and Alexandrov I.V.: Prog. Mater Sci. 45 (2000) 103-189.
  8. Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Zehetbauer M.J. and Zhu Y.T.: JOM 58 (2006) 33-39.
  9. Figueiredo R.B., Aguilar M.T.P., Cetline P.R. and Langdon T.G.: IOP Conf. Series: Mater. Sci. Eng. 63 (2014) 012171.
  10. Watanabe H., Mukai T., Ishikawa K. and Higashi K.: Scr. Mater. 46 (2002) 851-856.
  11. Chuvil’deev V.N., Nieh T.G., Gryaznov M.Y., Kopylov V.I. and Sysoev A.N.: J. Alloys Compd. 378 (2004) 253-257.
  12. Miyahara Y., Matsubara K., Horita Z. and Langdon T.G.: Metall. Mater. Trans. A 36 (2005) 1705-1711.
  13. Miyahara Y., Horita Z. and Langdon T.G.: Mater. Sci. Eng. A 420 (2006) 240-244.
  14. Furui M., Xu C., Aida T., Inoue M., Anada H. and Langdon T.G.: Mater. Sci. Eng. A 410-411 (2005) 439-442.
  15. Figueiredo R.B. and Langdon T.G.: Mater. Sci. Eng. A 430 (2006) 151-156.
  16. Figueiredo R.B. and Langdon T.G.: Adv. Eng. Mater. 10 (2008) 37-40.
  17. Xu S.W., Zheng M.Y., Kamado S. and Wu K.: Mater. Sci. Eng. A 549 (2012) 60-68.
  18. Harai Y., Kai M., Kaneko K., Horita Z. and Langdon T.G.: Mater. Trans. 49 (2008) 76-83.
  19. Kai M., Horita Z. and Langdon T.G.: Mater. Sci. Eng. A 488 (2008) 117-124.
  20. Torbati-Sarraf S.A. and Langdon T.G.: J. Alloys Compd. 613 (2014) 357-363.
  21. Figueiredo R.B. and Langdon T.G.: J. Mater. Sci. 45 (2010) 4827-4836.
  22. Torbati-Sarraf S.A., Sabbaghianrad S. and Langdon T.G.: Lett. Mater. 5 (2015) 287-293.
  23. Yu Y., Kuang S., Chu D., Zhou H., Li J. and Li C.: Metallogr. Microstruct. Anal. 4 (2015) 518-524.
  24. Tsai H.J., Kuo C.G., Chao C.G. and Liu T.F.: J. Mar. Sci. Technol. 24 (2016) 379-383.
  25. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, (Pergamon Press, New York, 1982), p. 53.
  26. Watanabe H., Mukai T. and Higashi K.: Scr. Mater. 40 (1999) 477-484.
  27. Yu Y., Jiang H., Li Q., Zai C. and Ding W.: Trans. Nonferrous Metal Soc. Chin. 15 (2005) 1253-1257.
  28. Watanabe H., Mukai T., Ishikawa K. and Higashi K.: Scr. Mater. 46 (2002) 851-856.
  29. Bussiba A., Ben Artzy A., Shtechman A., Ifergan S. and Kupiec M.: Mater. Sci. Eng. A 302 (2001) 56-62.
  30. Kawasaki M., Figueiredo R.B., Xu C. and Langdon T.G.: Metall. Mater. Trans. A 38 (2007) 1891-1898.
  31. Galiyev A., Kaibyshev R. and Gottstein G.: Acta Mater. 49 (2001) 1199-1207.
  32. Yang X., Miura H. and Sakai T.: Mater. Trans. 43 (2002) 2400-2407.
  33. Thompson A.W.: Metallography 5 (1972) 366-369.
  34. T.H. Courtney: Mechanical Behavior of Materials, (McGraw-Hill, Boston, 2000), pp. 293-313.
  35. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, (PWS Publishing Company, Boston, 1991), p. 842.
  36. Lüthy H., White R.A. and Sherby O.D.: Mater. Sci. Eng. 39 (1979) 211-216.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp