Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.648-655
© 2018 The Japan Institute of Metals and Materials

Visible-Light-Assisted Silver Ion Reduction through Silver Diammine and Citrate Aggregation, and Silver Nanoparticle Formation

Kazuhiro Hashiguchi, Masashi Kamiya and Hisanori Tanimoto

Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan

Hexagonal silver nanoparticles are directly formed in a solution of 6.6 mM silver citrate and 132 mM ammonia irradiated by 1.98-2.46 eV visible light. The corresponding silver ion concentration is 19.8 mM, which is several orders of magnitude higher than those employed in other silver-nanoparticle-formation experiments. In the present study, the roles of silver citrate and ammonia on nanoparticle formation are investigated through experiments in which the concentrations of silver citrate (SC) and ammonia (NH3) are altered. Silver nanoparticles are efficiently formed when [SC] is the 1.65-6.6 mM range and the [NH3]/[SC] ratio is ∼8-16. Further, hexagonal nanoplates are dominantly formed when [SC] = 1.65-6.6 mM and [NH3]/[SC] = ∼16. Within this range, hexagonal nanoplate formation is insensitive to solution concentration. Concentrations of SC less than 1.65 mM, or NH3 ≥ 132 mM, inhibit the formation of silver nanoparticles. These observations suggest that aggregates composed of diammine silver complexes and citrate are formed at specific concentration ranges of SC and NH3, and they assist in the photoreduction of silver ions by 1.98-2.46 eV visible light. Furthermore, the lateral growth of platelet seeds is proposed to be the dominant mechanism for the formation of hexagonal nanoplates at [SC] values of 1.65-6.6 mM and [NH3]/[SC] = ∼16.


(Received 2017/12/20; Accepted 2018/01/26; Published 2018/03/25)

Keywords: silver nanoparticle, visible-light-assisted reduction, aggregates of diammine silver complexes and citrate, lateral growth of platelet seed

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Choi H., Lee S.J., Jung J.W., Park H., Yoo S., Park O., Jeong J.R., Park S. and Kim J.Y.: Nano Lett. 13 (2013) 2204-2208.
  2. Gangishetty M.K., Lee K.E., Scott R.W. and Kelly T.L.: ACS Appl. Mater. Interfaces 5 (2013) 11044-11051.
  3. Honda M., Kumamoto Y., Taguchi A., Saito Y. and Kawata S.: Appl. Phys. Lett. 104 (2014) 061108.
  4. da Silva A.G.M., Rodrigues T.S., Wang J., Yamada L.K., Alves T.V., Ornellas F.R., Ando R.A. and Camargo P.H.C.: Langmuir 31 (2015) 10272-10278.
  5. Wang H., Zheng X., Chen J., Wang D., Wang Q., Xue T., Liu C., Jin Z., Cui X. and Zheng W.: J. Phys. Chem. C 116 (2012) 24268-24273.
  6. Zhang Q., Li W., Moran C., Zeng J., Chen J., Wen L.P. and Xia Y.: J. Am. Chem. Soc. 132 (2010) 11372-11378.
  7. Rycenga M., Xia X., Moran C.H., Zhou F., Qin D., Li Z.-Y. and Xia Y.: Angew. Chem. Int. Ed. 50 (2011) 5473-5477.
  8. Yang L.-C., Lai Y.-S., Tsai C.-M., Kong Y.-T., Lee C.-I. and Huang C.-L.: J. Phys. Chem. C 116 (2012) 24292-24300.
  9. Yen C.W., Puig H., Tam J.O., Gomez-Marquez J., Bosch I., Hamad-Schifferli K. and Gehrke I.: Lab Chip 15 (2015) 1638-1641.
  10. Li H., Zhu Y., Dong S., Qiang W., Sun L. and Xu D.: Anal. Chim. Acta 829 (2014) 48-53.
  11. Li H., Zhao Y., Chen Z. and Xu D.: Biosens. Bioelectron. 87 (2017) 428-432.
  12. Li H., Hu H.T. and Xu D.: Anal. Chem. 87 (2015) 3826-3833.
  13. Deivaraj T.C., Lala N.L. and Lee J.Y.: J. Colloid Interface Sci. 289 (2005) 402-409.
  14. Chen B., Jiao X.L. and Chen D.R.: Cryst. Growth Des. 10 (2010) 3378-3386.
  15. Xue C. and Mirkin C.A.: Angew. Chem. Int. Ed. 46 (2007) 2036-2038.
  16. Zhang Q., Hu Y., Guo S., Goebl J. and Yin Y.: Nano Lett. 10 (2010) 5037-5042.
  17. Bera R.K. and Raj C.R.: J. Photochem. Photobiol. Chem. 270 (2013) 1-6.
  18. Yu H., Zhang Q., Liu H., Dahl M., Joo J.B., Li N., Wang L. and Yin Y.: ACS Nano 8 (2014) 10252-10261.
  19. Zhang Q., Li N., Goebl J., Lu Z. and Yin Y.: J. Am. Chem. Soc. 133 (2011) 18931-18939.
  20. Lee B.H., Hsu M.S., Hsu Y.C., Lo C.W. and Huang C.L.: J. Phys. Chem. C 114 (2010) 6222-6227.
  21. Lee G.P., Minett A.I., Innis P.C. and Wallace G.G.: J. Mater. Chem. 19 (2009) 8294-8298.
  22. Lee G.P., Bignell L.J., Romeo T.C., Razal J.M., Shepherd R.L., Chen J., Minett A.I., Innis P.C. and Wallace G.G.: Chem. Commun. 46 (2010) 7807-7809.
  23. Kim B.-H. and Lee J.-S.: Mater. Chem. Phys. 149-150 (2015) 678-685.
  24. Lee G.P., Shi Y.C., Lavoie E., Daeneke T., Reineck P., Cappel U.B., Huang D.M. and Bach U.: ACS Nano 7 (2013) 5911-5921.
  25. An J., Tang B., Zheng X., Zhou J., Dong F., Xu S., Wang Y., Zhao B. and Xu W.: J. Phys. Chem. C 112 (2008) 15176-15182.
  26. Lopez I.A., Ceballos M., Hernandez G., Acosta L. and Gomez I.: Rev. Mex. Fis. 61 (2015) 77-82.
  27. Saade J. and de Araujo C.B.: Mater. Chem. Phys. 148 (2014) 1184-1193.
  28. Zhang Q., Ge J., Pham T., Goebl J., Hu Y., Lu Z. and Yin Y.: Angew. Chem. Int. Ed. 121 (2009) 3568-3571.
  29. Sherry L.J., Jin R., Mirkin C.A. and Schatz G.C.: Nano Lett. 6 (2006) 2060-2065.
  30. Jin R., Cao Y., Mirkin C.A., Kelly K.L., Schatz G.C. and Zheng J.G.: Science 294 (2001) 1901-1903.
  31. Wu X., Redmond P.L., Liu H., Chen Y., Steigerwald M. and Brus L.: J. Am. Chem. Soc. 130 (2008) 9500-9506.
  32. Zhang J., Langille M.R. and Mirkin C.A.: Nano Lett. 11 (2011) 2495-2498.
  33. Pietrobon B. and Kitaev V.: Chem. Mater. 20 (2008) 5186-5190.
  34. Zheng X., Zhao D., Guo D., Tang B., Xu S., Zhao B. and Xu W.: Langmuir 25 (2009) 3802-3807.
  35. Wang H., Cui X., Guan W., Zheng H., Wang Z., Wang Q., Xue T., Liu C., Singh D.J. and Zheng W.: Nanoscale 6 (2014) 7295-7302.
  36. Stamplecoskie K.G. and Scaiano J.C.: J. Am. Chem. Soc. 132 (2010) 1825-1827.
  37. Ye S., Song J., Tian Y., Chen L., Wang D., Niu H. and Qu J.: Nanoscale 7 (2015) 12706-12712.
  38. Gao Y., Jiang P., Song L., Wang J.X., Liu L.F., Liu D.F., Xiang Y.J., Zhang Z.X., Zhao X.W. and Dou X.Y.: J. Cryst. Growth 289 (2006) 376-380.
  39. Tsuji M., Ogino M., Matsuo R., Kumagae H., Hikino S., Kim T. and Yoon S.H.: Cryst. Growth Des. 10 (2010) 296-301.
  40. Murshid N. and Kitaev V.: Chem. Commun. 50 (2014) 1247-1249.
  41. Sun Y., Mayers B., Herricks T. and Xia Y.: Nano Lett. 3 (2003) 955-960.
  42. Sun Y. and Xia Y.: Science 298 (2002) 2176-2179.
  43. Wiley B.J., Chen Y., McLellan J.M., Xiong Y., Li Z.-Y., Ginger D.S. and Xia Y.: Nano Lett. 7 (2007) 1032-1036.
  44. Zhang J., Mark R.L. and Mirkin C.A.: J. Am. Chem. Soc. 132 (2010) 12502-12510.
  45. Wiley B.J., Xiong Y., Li Z.-Y., Yin Y. and Xia Y.: Nano Lett. 6 (2006) 765-768.
  46. Langille M.R., Personick M.L. and Mirkin C.A.: Angew. Chem. Int. Ed. 52 (2013) 13910-13940.
  47. Tanimoto H., Ohmura S. and Maeda Y.: J. Phys. Chem. C 116 (2012) 15819-15825.
  48. Tanimoto H., Hashiguchi K. and Ohmura S.: J. Phys. Chem. C 119 (2015) 19318-19325.
  49. Jiang X.C., Chen C.Y., Chen W.M. and Yu A.B.: Langmuir 26 (2010) 4400-4408.
  50. An J., Tang B., Ning X., Zhou J., Xu S., Zhao B., Xu W., Corredor C. and Lombardi J.R.: J. Phys. Chem. C 111 (2007) 18055-18059.
  51. Tang B., Xu S., An J., Zhao B. and Xu W.: J. Phys. Chem. C 113 (2009) 7025-7030.
  52. Gorup L.F., Longo E., Leite E.R. and Camargo E.R.: J. Colloid Interface Sci. 360 (2011) 355-358.
  53. Pastoriza-Santos I. and Liz-Marzán L.M.: Nano Lett. 2 (2002) 903-905.
  54. Darmanin T., Nativa P., Gilliland D., Ceccone G., Pascual C., De Berardis B., Guittard F. and Rossi F.: Colloids Surf. A 395 (2012) 145-151.
  55. Kakihana M.: J. Sol-Gel Sci. Technol. 6 (1996) 7-55.
  56. Takesue M., Tomura T., Yamada M., Hata K., Kuwamoto S. and Yonezawa T.: J. Am. Chem. Soc. 133 (2011) 14164-14167.
  57. Harada M., Tamura N. and Takenaka M.: J. Phys. Chem. C 115 (2011) 14081-14092.
  58. Yao T., Sun Z., Li Y., Pan Z., Wei H., Xie Y., Nomura M., Niwa Y., Yan W., Wu Z., Jiang Y., Liu Q. and Wei S.: J. Am. Chem. Soc. 132 (2010) 7696-7701.
  59. Xue C., Métraux G.S., Millstone J.E. and Mirkin C.A.: J. Am. Chem. Soc. 130 (2008) 8337-8344.


© 2018 The Japan Institute of Metals and Materials
Comments to us :