Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.642-647
© 2018 The Japan Institute of Metals and Materials

Effect of Cr Diffused Layer Formed by AIH-FPP Treatment on Adhesion of DLC Films to a Carbon Steel Substrate

Shogo Takesue1, Hiroyuki Akebono2, Mizuki Furukawa1, Shoichi Kikuchi3, Jun Komotori4 and Hirorou Nomura5

1School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama 223-8522, Japan
2Department of Mechanical Science and Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
3Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
4Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
5Matsuyama Giken Co., Ltd., Ueda 386-0407, Japan

In this study, a diffusion layer of Cr was formed on the surface of a carbon steel by atmospheric-controlled induction heating fine particle peening (AIH-FPP) treatment, followed by coating of a diamond-like carbon (DLC) film in an attempt to provide a less expensive and facile method for the production of DLC-coated steels with superior adhesion to conventional methods. Frictional wear tests and indentation tests with Vickers indenter were conducted on these DLC-coated steel specimens, and adhesion to the substrate was investigated experimentally. It was revealed that the formation of a Cr diffused layer on the surface of the substrate by AIH-FPP treatment significantly improved the adhesion of the DLC film to the substrate under a sliding load and a large plastic deformation. In addition, frictional wear tests revealed that the thickness of the Cr diffused layer formed by AIH-FPP treatment has a significant influence on the adhesion of the DLC film to the substrate. A thicker Cr diffused layer with a thickness of about 100 µm imparted better adhesion of the DLC film to the base material, and the superior friction and wear characteristics of the DLC film were sustained up to 49000 wear cycles while the specimens with a Cr diffused layer thickness of about 40 µm and without a Cr diffused layer maintained low friction coefficients up to 36000 and 8000 wear cycles, respectively. These results suggest that the proposed film forming method with a Cr diffused layer formed by AIH-FPP treatment is superior to the conventional method and is very efficient as a technique to improve the adhesion of DLC films to a carbon steel substrate.

[doi:10.2320/matertrans.M2017367]

(Received 2017/11/30; Accepted 2018/01/16; Published 2018/03/25)

Keywords: surface modification, diamond-like carbon, fine particle peening, induction heating, adhesion

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Ito T., Kikuchi S., Kameyama Y., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: J. Japan Inst. Metals 74 (2010) 533-539.
  2. Ota S., Akebono H., Kikuchi S., Murai K., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: Mater. Trans. 57 (2016) 1801-1806.
  3. Fukuoka T., Kikuchi S., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: J. Japan Inst. Metals 75 (2011) 372-378.
  4. Fukuoka T., Ujiie Y., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: Procedia Eng. 10 (2011) 1503-1508.
  5. Amano Y., Amano S., Fukuoka T. and Komotori J.: J. Soc. Mater. Sci. Jpn. 61 (2012) 273-279.
  6. Kikuchi S., Iwamae S., Akebono H., Komotori J. and Kadota K.: Surf. Coat. Tech. 334 (2018) 189-195.
  7. Fukuoka T., Kikuchi S., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: J. Japan Inst. Metals 76 (2012) 422-428.
  8. Kikuchi S., Fukuoka T., Sasaki T., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: Mater. Trans. 54 (2013) 344-349.
  9. Kameyama Y., Amano Y., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: J. Japan Inst. Metals 77 (2013) 7-13.
  10. Kameyama Y., Takeshima H., Komotori J. and Murasawa K.: J. Jpn. Inst. Metals 79 (2015) 452-460.
  11. Saito S., Suzuki K., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: J. Japan Inst. Met. Mater. 80 (2016) 562-569.
  12. Saito S., Takesue S., Komotori J., Fukazawa K. and Misaka Y.: J. Jpn. Soc. Abras. Technol. 61 (2017) 145-150.
  13. Saito S., Takesue S., Komotori J., Fukazawa K. and Misaka Y.: J. Japan Inst. Met. Mater. 81 (2017) 295-300.
  14. Kameyama Y., Niwa A. and Komotori J.: J. Soc. Mater. Sci. Jpn. 56 (2007) 453-459.
  15. Kameyama Y. and Komotori J.: Wear 263 (2007) 1354-1363.
  16. Nanbu H., Kikuchi S., Kameyama Y. and Komotori J.: J. Solid Mech. Mater. Eng. 3 (2009) 328-335.
  17. Du D., Liu D., Ye Z., Zhang X., Li F., Zhou Z. and Yu L.: Appl. Surf. Sci. 313 (2014) 462-469.
  18. Omori T., Morita T., Okada K. and Maeda H.: Mater. Trans. 56 (2015) 389-397.
  19. Morita T., Inoue K., Ding X., Usui Y. and Ikenaga M.: Mater. Sci. Eng. A 661 (2016) 105-114.
  20. Nakamura M. and Takamori Y.: Trans. Jpn. Soc. Mech. Eng. 82 (2016) 16-00157.
  21. Kikuchi S., Sasago A. and Komotori J.: J. Mater. Process. Technol. 209 (2009) 6156-6160.
  22. Harada T., Kikuchi S., Komotori J., Fukazawa K., Misaka Y. and Kawasaki K.: J. Soc. Mater. Sci. Jpn. 60 (2011) 1091-1096.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp