Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.625-633
© 2018 The Japan Institute of Metals and Materials

Microstructure and Compressive Properties of Aluminum Foams Made by 6063 Aluminum Alloy and Pure Aluminum

Tong Shi1, 2, Xiang Chen1, 3, Ying Cheng1, Yuan Liu1, 3, Huawei Zhang1, 3 and Yanxiang Li1, 3

1School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
2Metals & Chemistry Research Institute, China Academy of Railway Sciences, Beijing, 100081, China
3Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing, 100084, China

Aluminum foams are new kind of structural-functional composite materials which comprised of aluminum matrix and gas pores. In this paper, aluminum foams with homogeneous pore structure made by 6063 aluminum alloy were fabricated by melt foaming method. As comparison, the aluminum foams were also fabricated by pure aluminum. Studies on process parameter, microstructure and mechanical properties have been carried out. Process optimization for aluminum foams made by 6063 alloys has been studied according to the orthogonal experimental design method. The cell wall of aluminum foam is comprised of Al matrix, Ca-thickening phase and Ti-containing phase. The difference between foams made by 6063 aluminum alloy and pure aluminum is that there is element Mg and element Si dissolved in the matrix in the 6063 aluminum foam, which are positive to the foam strength accordingly. For different base materials, the compressive strength of foams made by 6063 aluminum alloy is greater than that made by pure aluminum.


(Received 2017/09/29; Accepted 2018/01/25; Published 2018/03/25)

Keywords: microstructure, compressive property, 6063 aluminum foam, orthogonal experimental design

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Miyoshi T., Itoh M., Akiyama S. and Kitahara A.: Adv. Eng. Mater. 2 (2000) 179-183.
  2. Banhart J.: Adv. Eng. Mater. 15 (2013) 82-111.
  3. Wang N.Z., Chen X., Yuan J.Y., Wang G.Q., Li Y.X., Zhang H.W. and Liu Y.: Metall. Mater. Trans. B 47 (2016) 3362-3374.
  4. Cheng Y., Li Y.X., Chen X., Shi T., Liu Z.Y. and Wang N.Z.: Metall. Mater. Trans. B 48 (2017) 754-762.
  5. Yuan J.Y., Li Y.X., Wang N.Z., Cheng Y. and Chen X.: Metall. Mater. Trans. B 47 (2016) 1649-1660.
  6. Nakajima H.: Prog. Mater. Sci. 52 (2007) 1091-1173.
  7. Banhart J.: Prog. Mater. Sci. 46 (2001) 559-632.
  8. Soloki A. and Esmailian M.: Metall. Mater. Trans. B 46 (2015) 1052-1057.
  9. G. Taguchi and S. Konishi: Taguchi Methods: Orthogonal Arrays and Linear Graphs, (American Supplier Institute, USA, 1987).
  10. P.J. Ross: Taguchi Techniques for Quality Engineering, (McGraw-Hill, USA, 1996) p. 43.
  11. Surace R., Bruno S., De Filippis L.A.C. and Ludovico A.D.: Int. J. Simul. Model. 8 (2009) 81-89.
  12. Surace R., De Filippis L.A.C., Ludovico A.D. and Boghetich G.: Int. J. Mater. Form. 3 (2010) 1-5.
  13. Solórzano E., Reglero J.A., Rodríguez-Pérez J.M.A., Saja J.A. and Rodríguez-Mendez M.L.: J. Mater. Sci. 42 (2007) 7227-7238.
  14. Markaki A.E. and Clyne T.W.: Acta Mater. 49 (2001) 1677-1686.
  15. Onck P.R., Merkerk R.V., Raaijmakers A. and Hosson J.T.M.D.: J. Mater. Sci. 40 (2005) 5821-5828.
  16. Raj R.E. and Daniel B.S.S.: J. Alloys Compd. 467 (2009) 550-556.
  17. Jeenager V.K. and Pancholi V.: Mater. Des. 56 (2014) 454-459.
  18. Yuan J.Y. and Li Y.X.: T. Nonferr. Metal Soc. 25 (2015) 1619-1625.
  19. Shi T., Chen X., Cheng Y. and Li Y.X.: Mater. Trans. 58 (2017) 243-248.
  20. Song Z.L., Zhu J.S., Ma L.Q. and He D.P.: Mater. Sci. Eng. A 298 (2001) 137-143.
  21. H.W.L. Phillips: Annotated Equilibrium Diagrams of Some Aluminum Alloy Systems, (Institute of Metals, London, UK, 1959).
  22. Zheng X.Y., Jiang F., Jin X.L., Chen W., Chen Y.Z. and Xu Y.P.: Light Alloy Fabrication Tech. 40 (2012) 21-24.
  23. Awano Y. and Shimizu Y.: AFS Trans. 98 (1990) 889-895.
  24. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, (Press Syndicate of the University of Cambridge, Cambridge, UK, 1997) pp. 175-231.
  25. M.F. Ashby, A.G. Evans, N.A. Fleck, L.G. Gibson, J.W. Hutchinson and H.N.G. Wadley: Metal Foams: A Design Guide, (ISBN 0-7506-7219-6, Butterworth-Heinemann, Oxford, UK, 2000) p. 251.
  26. Tan P.J., Harrigan J.J. and Reid S.R.: Mater. Sci. Tech-lond. 18 (2002) 480-488.
  27. Gibson L.J. and Ashby M.F.: Proc. R. Soc. London Ser. A 382 (1982) 43-59.
  28. Lim T.J., Smith B. and McDowell D.L.: Acta Mater. 50 (2002) 2867-2879.
  29. G. Lu and T. Yu Tongxi: Energy Absorption of Structures and Materials, (Woodhead Publishing Limited, Cambridge, UK, 2003) pp. 268-285.


© 2018 The Japan Institute of Metals and Materials
Comments to us :