Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.620-624
© 2018 The Japan Institute of Metals and Materials

Lead-Based Anodes for Copper Electrowinning: Effect of Grain Size on Mechanical and Anticorrosion Properties

Carlos Camurri, Claudia Carrasco, Yasmin Maril and Jonathan Peralta

University of Concepcion, Department of Materials Engineering, Post Code 160, Concepcion, Chile

The aim of this paper was to study the effect of the grain size of lead-based anodes for copper electrowinning on their mechanical and anticorrosion properties. Aged anodes were cold rolled to different thicknesses, achieving reductions varying from their standard 50% up to 75%. The grain size, yield stress, and corrosion behavior of the different rolled samples was evaluated by galvanostatic polarization essays. It was found that by lowering the grain size, the yield stress of the anodes increased up to 66 MPa and the improved anodes maintained a higher yield stress with time and throughout temperature operation in cells, as compared with the currently used anodes. Also, a significant diminution of the corroded mass, up to 30%, was observed as cold reduction increased due to the formation of a more compact and less permeable PbSO4 at lower grain size.


(Received 2017/11/27; Accepted 2018/01/22; Published 2018/03/25)

Keywords: lead-based anodes, yield stress, grain size, corrosion behavior, working life

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Camurri C., López M., Pagliero A. and Vergara F.: Mater. Charact. 47 (2001) 105-109.
  2. Camurri C., Araneda E., Pagliero A. and Dille J.: Mater. Sci. Forum 475-479 (2005) 2631-2634.
  3. C. Camurri, A. Pagliero, M. López and F. Vergara: Proc. Congress Normalization of the quality and behaviour of the anodes, (Calama, Chile, 2002) pp. 31-38.
  4. C. Camurri, E. Araneda and A. Pagliero: Proc. Int. Congress SAM/CONAMET, (Bariloche, Argentina, 2003).
  5. C. Camurri, M. López, A. Pagliero and F. Vergara: Proc. Int. Congress IBEROMET VI, (Barcelona, Spain, 2000).
  6. Rossi F., Lambertin L., Delfaut-Durut L., Maître A. and Vilasi M.: J. Power Sources 188 (2009) 296-300.
  7. Maître A., Bourguignon G., Fiorani J., Ganbjaja J. and Steimetz J.: Mater. Sci. Eng. A 358 (2003) 233-242.
  8. Muras J., Munroe P., Blairs S., Krauklis P., Chen Z. and See J.: J. Power Sources 55 (1995) 119-122.
  9. Dehmasa M., Maître A., Richir J. and Archambault P.: J. Power Sources 159 (2006) 721-727.
  10. Pérez-González F., Camurri C., Carrasco C. and Colás R.: Mater. Charact. 64 (2012) 62-68.
  11. Camurri C., Carrasco C., Prat O., Mangalaraja R., Pagliero A. and Colás R.: Mater. Sci. Technol. 26 (2010) 210-214.
  12. Winand R.: Métallurgie 17 (1978) 56.
  13. Mao G., Larson J. and Rao P.: J. Electro. Soc. 120 (1973) 11-17.
  14. D. Prengaman: Anodes for Electrowinning, (Robinson & James, 1984) pp. 49-57.
  15. D. Prengaman and A. Siegmund: Proc. Int. Congress Copper 99, (Phoenix, Arizona, 1999) pp. 1-11.
  16. Prengaman D.: J. Power Sources 67 (1997) 267-278.
  17. J. Young and J. Barclay: Proc. 85 Battery Council International Meeting, (San Francisco, USA, 1973) p. 37.
  18. M. Rose and J. Young: Proc. 5th Int. Lead Conference, (Paris, 1974).
  19. Caldwell T. and Sokolov U.: J. Power Sources (1975) 73-79.
  20. Camurri C., Carrasco C. and Maril Y.: Mater. Sci. Forum 879 (2016) 284-288.
  21. Mohammadi M., Mohammadi F., Houlachi G. and Alfantazia A.: J. Electrochem. Soc. 160 (2013) E27-E33.
  22. Liu H.-T., Liang H.-H., Yang J., Yang C.-X. and Zhou W.-F.: Acta Chim. Sin. 60 (2002) 427-431.
  23. Ruetschi P. and Angstad R.T.: J. Electrochem. Soc. 111 (1964) 1323-1330.
  24. Guo Y., Niu L., Zhang S. and Chen S.: J. Power Sources 85 (2000) 38-43.


© 2018 The Japan Institute of Metals and Materials
Comments to us :