Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.612-619
© 2018 The Japan Institute of Metals and Materials

Effect of Sintering Temperature on Fatigue Crack Propagation Rate of Sintered Ag Nanoparticles

Ryo Kimura1, Yoshiharu Kariya2, Noritsuka Mizumura3 and Koji Sasaki3

1Graduate School of Shibaura Institute of Technology, Tokyo 135-8548, Japan
2Department of Materials Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan
3NAMICS Corporation, Niigata 950-3102, Japan

In this study, the effect of sintering temperatures on fatigue crack propagation rates of sintered Ag nanoparticles were investigated. Paris’ law type fatigue crack propagation law between the fatigue crack propagation rate and the inelastic strain energy density range was found to hold at all test temperatures. The power exponent in the fatigue crack propagation law for the Ag nanoparticles sintered at 423 K was large and the fatigue crack propagation rate was fast with excessively brittle behavior. The stress and strain concentrations at neck parts interlinked with each other in damaged areas, in addition to the brittle grain boundary fractures, resulted in the excessively brittle behavior. On the other hand, the Ag nanoparticles sintered at 473 K showed more ductile behavior as pores decreases with sintering progression and the local strain concentrations were fewer compared to the Ag nanoparticles sintered at 423 K. However, with test temperature increasing, the grain boundary became viscous, so the power exponent in the fatigue crack propagation law and fatigue crack propagation rate at any sintering temperature decreased, causing only minor differences by sintering temperature in fatigue crack propagation rates.

[doi:10.2320/matertrans.M2017392]

(Received 2017/12/11; Accepted 2018/01/17; Published 2018/03/25)

Keywords: silver nanoparticles, power device, die attach, micro joining, fatigue crack propagation, sintering temperature, inelastic strain energy density range, micro-scale FEA, mechanical properties

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Singh R.: J. Microel. Rel. 46 (2006) 713-730.
  2. Casady J.B. and Johnson R.W.: J. Sol. St. Elec. 39 (1996) 1409-1422.
  3. M. Ostling, R. Ghandi and C.M. Zetterling: Proc. of 23rd ISPSD & IC’s, (2011) 10-15.
  4. Bai J.G., Yin J., Zhang Z., Lu G.Q. and van Wyk J.D.: IEEE Trans. Adv. Packag. 30 (2007) 506-510.
  5. Wang T., Chen X., Lu G.Q. and Lei G.Y.: J. Electron. Mater. 36 (2007) 1333-1340.
  6. Kisiel R. and Szczepanski Z.: J. Microel. Rel. 49 (2009) 627-629.
  7. Le Henaff F., Azzoparidi S., Deletage J.Y., Woirgard E., Bontemps S. and Joguet J.: J. Microel. Rel. 52 (2012) 2321-2325.
  8. Shioda R., Kariya Y., Mizumura N. and Sasaki K.: J. Smart Processing. 5 (2016) 259-265.
  9. Kariya Y., Yamaguchi H., Itako M., Mizumura N. and Sasaki K.: J. Smart Processing. 2 (2013) 160-165.
  10. Shioda R., Kariya Y., Mizumura N. and Sasaki K.: J. Electron. Mater. 46 (2017) 1155-1162.
  11. Akada Y., Tatsumi H., Yamaguchi T., Hirose A., Morita T. and Ide E.: J. Mat. Trans. 49 (2008) 1537-1545.
  12. Alarifi H., Hu A., Yavuz M. and Zhou Y.N.: J. Elec. Mater. 40 (2011) 1394-1402.
  13. Lau J.H., Pan S.H. and Chang C.: J. Elec. Pack. 124 (2002) 212-220.
  14. R. Darveaux: Proc. of 50th Electronic Components & Technology Conference, (2000) pp. 1048-1058.
  15. E.A. Brandes: Smithells Metals Reference Book, six ed., (Butterworths, England, 1983) p. 15-3.
  16. Kanchanomai C., Miyashita Y. and Mutoh Y.: J. Electron. Mater. 31 (2002) 142-151.
  17. Zhao J., Mutoh Y., Miyashita Y. and Wang L.: J. Eng. Fract. Mech. 70 (2003) 2187-2197.
  18. Okazaki M. and Koizumi T.: J. Metall. Mat. Trans. A 14 (1983) 1641-1648.
  19. Taniguchi M. and Kariya Y.: J. Mater Trans. 57 (2016) 853-859.
  20. Hutchinson J.W.: J. Mech. Phys. Solids 16 (1968) 13-31.
  21. Rice J.R. and Rosengren G.F.: J. Mech. Phys. Solids 16 (1968) 1-12.
  22. Cheng S., Spencer J.A. and Milligan W.W.: J. Acta Mater. 51 (2003) 4505-4518.
  23. Hall E.O.: Proc. Phys. Soc. London. B 64 (1951) 747-753.
  24. Petch N.J.: J. Iron Steel Inst. 174 (1953) 25-28.
  25. Ashby M.F.: J. Acta Mater. 22 (1974) 275-289.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp