Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.580-584
© 2018 The Japan Institute of Metals and Materials

Description of Thermal Vacancies in the CALPHAD Method

Taichi Abe1, 2, Kiyoshi Hashimoto2 and Masato Shimono2

1Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba 305-0047, Japan
2Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan

Thermal vacancies in solids have not been treated explicitly in the CALPHAD-type thermodynamic assessments because it was considered that their contributions to the Gibbs energy were limited, even at the melting point. However, the vacancy fraction is necessary for dynamic simulations, such as precipitations and diffusion processes. In this paper, a procedure is proposed to set parameters in the CALPHAD-type assessments, to reproduce the temperature dependency of thermal vacancies in pure metals and solid solutions.


(Received 2017/11/02; Accepted 2018/01/22; Published 2018/03/25)

Keywords: point defect, substitutional solid solution, sublattice model, thermodynamic database, mono vacancy

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Doyama: Koushikekkan, H. Suzuki (Ed.), (Kyoritsu Shuppan, 1978) pp. 163-178.
  2. M. Hillert: Phase equilibria, phase diagrams and phase transformations, (Cambridge, 1998) pp. 428-432.
  3. J.H. Crawford, Jr. and L.M. Slifkin: Point defects in solids, (Plenum press, 1972) pp. 1-101.
  4. T. Nishizawa: Micro soshiki no netsurikigaku, (Japan Institute of Metals and Materials, 2005) pp. 25-29.
  5. Ren X. and Otsuka K.: Philos. Mag. A 80 (2000) 467-491.
  6. Hillert M. and Selleby M.: J. Alloys Compd. 329 (2001) 208-213.
  7. Rogal J., Divinski S.V., Finnis M.W., Glensk A., Neugebauer J., Perepezko J.H., Schuwalow S., Sluiter M.H.F. and Sundman B.: Phys. Status Solidi B 251 (2014) 97-129.
  8. Shang S.-L., Zhou B.-C., Wang W.Y., Ross A.J., Liu X.L., Hu Y.-J., Fang H.-Z., Wang Y. and Liu Z.-K.: Acta Mater. 109 (2016) 128-141.
  9. Palumbo M., Burton B., Costa e Silva A., Fultz B., Grabdwski B., Grimvall G., Hallstedt B., Hellman O., Lindahl B., Schneider A., Turchi P.E.A. and Xiong W.: Phys. Status Solidi B 251 (2014) 14-32.
  10. Dupin N., Ansara I. and Sundman B.: Calphad 25 (2001) 279-298.
  11. H.L. Lukas, S.G. Fries and B. Sundman: Computational Thermodynamics The Calphad Method, (Cambridge, 2007) pp. 131-133.
  12. Franke P.: J. Phase Equil. Diff. 35 (2014) 780-787.
  13. H. Numakura: Defects in Metals: in Physical Metallurgy, D.E. Laughlin and K. Hono (Eds.), (Elsevier, 2014) pp. 603-621.
  14. H.J. Wollenberger: Point Defects: in Physical Metallurgy 5th edition, R.W. Cahn and P. Haasen (Eds.), (North-Holland Publishing, 1983) pp. 1622-1721.
  15. Dupin N. and Ansara I.: Z. Metallk. 90 (1999) 76-85.
  16. Oates W.A., Chen S.-L., Cao W., Zhang F., Chang Y.A., Bencze L., Doernberg E. and Schmid-Fetzer R.: Acta Mater. 56 (2008) 5255-5262.
  17. Dinsdale A.T., Khvan A.V. and Watson A.: Mater. Sci. Technol. 30 (2014) 1715-1718.
  18. Krachler R., Ipser H. and Komarek K.L.: J. Phys. Chem. Solids 50 (1989) 1127-1135.
  19. Hood G.M. and Schultz R.J.: J. Phys. F: Metal Phys. 10 (1980) 545-558.
  20. Simmons R.O. and Balluffi R.W.: Phys. Rev. 129 (1963) 1533-1544.
  21. Bourassa R.R. and Lengeler B.: J. Phys. F: Metal Phys. 6 (1976) 1405-1413.
  22. Simmons R.O. and Balluffi R.W.: Phys. Rev. 125 (1962) 862-872.
  23. SGTE Unary database version 5.0:
  24. Dinsdale A.T.: Calphad 15 (1991) 317-425.
  25. Hayes F.H., Lukas H.L., Effenberg G. and Petzow G.: Z. Metallk. 77 (1986) 749-754.


© 2018 The Japan Institute of Metals and Materials
Comments to us :