Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.563-567
© 2018 The Japan Institute of Metals and Materials

Effect of Cr on the Oxidation Resistance of Co-Based Oxide Dispersion Strengthened Superalloys

Hao Yu1, Shigeharu Ukai2, Shigenari Hayashi3 and Naoko Oono2

1Graduate school of Engineering, Hokkaido University, Sapporo 060-8268, Japan
2Faculty of Engineering, Hokkaido University, Sapporo 060-8268, Japan
3Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Alumina-forming oxide dispersion strengthened (ODS) superalloys are favorable oxidation-resistant materials for extremely high temperature applications. In order to develop the advanced Co-based superalloys with high strength and superior oxidation resistance at elevated temperature of 1000℃, a new series of Co-Cr-Al ODS superalloys were designed and fabricated by mechanical alloying (MA) and spark plasma sintering (SPS), and then followed by hot rolling and annealing at 1200℃. In this work, the oxidation behavior of Co-10Al (mass%) ODS superalloys with/without 20Cr was investigated at 1000℃ in air to understand the effect of Cr on oxidation resistance. The results indicate that the addition of Cr improves the oxidation resistance significantly through optimizing the oxide scales from the multilevel scales with an external CoO/CoAl2O4 and an internal Al2O3 to a single layer of Al2O3. The alumina-forming Co-20Cr-10Al (mass%) ODS superalloys are expected to be applicable at 1000℃.


(Received 2016/12/21; Accepted 2017/02/09; Published 2018/03/25)

Keywords: cobalt-based, oxide dispersion strengthened superalloys, high-temperature oxidation, electron probe micro-analyzer

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Coutsouradis D., Davin A. and Lamberigts M.: Mater. Sci. Eng. 88 (1987) 11-19.
  2. Bilbrey , Joseph H , Cobalt: a materials survey, U.S. Bureau of Mines, 1962, pp. 3-5.
  3. Zangeneh S.H. and Farhangi H.: Mater. Des. 31 (2010) 3504-3511.
  4. Sato J., Omori T., Oikawa K., Ohnuma I., Kainuma R. and Ishida K.: Science 312 (2006) 90-91.
  5. Klein L., Bauer A., Neumeier S., Goken M. and Virtanen S.: Corros. Sci. 53 (2011) 2027-2034.
  6. Ukai S. and Ohtsuka S.: Energy Mater. 2 (2007) 26-35.
  7. Tang Q., Hoshino T., Ukai S., Leng B., Hayashi S. and Wang Y.: Mater. Trans. 51 (2010) 2019-2024.
  8. Quadakkers W.J.: Werkst. Korros. 41 (1990) 659-668.
  9. Zhang L., Ukai S., Hoshino T., Hayashi S. and Qu X.: Acta Mater. 57 (2009) 3671-3682.
  10. Takezawa K., Ukai S. and Hayashi S.: Adv. Mater. Res. 239-242 (2011) 864-867.
  11. Sasaki T., Takazawa K., Ukai S., Oono N. and Hayashi S.: Mater. Sci. Eng. A 601 (2014) 139-144.
  12. Irving G.N., Stringer J. and Whittle D.P.: Corrosion-Nace 33 (1977) 56-60.
  13. Yu H., Ukai S., Hayashi S. and Oono N.: Corros. Sci. (2017).
  14. Yu H., Ukai S., Hayashi S. and Oono N.: Corros. Sci. submitted.
  15. Cao W., Chen S.-L., Zhang F., Wu K., Yang Y., Chang Y.A., Schmid-Fetzer R. and Oates W.A.: Calphad 33 (2009) 328-342.
  16. Yu H., Ukai S., Oono N. and Sasaki T.: Mater. Charact. 112 (2016) 188-196.
  17. Niu Y., Wang S., Gao F., Zhang Z.G. and Gesmundo F.: Corros. Sci. 50 (2008) 345-356.
  18. Niu Y., Zhang X.J., Wu Y. and Gesmundo F.: Corros. Sci. 48 (2006) 4020-4036.
  19. Wagner C.: Corros. Sci. 5 (1965) 751-764.
  20. Wagner C.: Z. Elektrochem. 63 (1959) 772.
  21. Yoneda S., Hayashi S., Saeki I. and Ukai S.: Oxid. Met. 86 (2016) 357-370.
  22. Kofstad P.K. and Hed A.Z.: J. Electrochem. Soc. 116 (1969) 1542-1550.
  23. Kofstad P.K. and Hed A.Z.: J. Electrochem. Soc. 116 (1969) 224-229.


© 2018 The Japan Institute of Metals and Materials
Comments to us :