Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.546-555
© 2018 The Japan Institute of Metals and Materials

Influence of Atomic Size Factors on the Phase Stability of Laves Phase in Nb-Cr-Ni-Al and Nb-V-Ni-Al Phase Diagrams

Takuya Yamanouchi1 and Seiji Miura2

1Graduate School of Materials Science and Engineering, Hokkaido University, Japan
2Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Phase equilibria among the refractory bcc solid solution (bccss), B2, and Laves phases in Nb-Cr-NiAl and Nb-V-NiAl isothermal sections were studied with the aim of introducing the NiAl-B2 phase and/or Al-containing Laves phase for improvement of the oxidation resistance of the bccss phase as an Al reservoir layer for the Al2O3 surface layer. Laves phases appear in a wide composition range in both of the isothermal sections, which prevent equilibration of NiAl-B2 with the Nb-rich bccss phase. The geometrical model proposed by Edwards was applied to understand the site-substitution behavior of the multi-component AB2 Laves phase. In the Nb-Cr-NiAl, Nb-V-NiAl, and Nb-Mo-NiAl systems, the site-substitution behavior of the Laves phases could be explained by comparison of the average atomic diameters of NiAl-B2, Cr, V, and Mo.

[doi:10.2320/matertrans.MJ201604]

(Received 2017/09/14; Accepted 2017/09/19; Published 2018/03/25)

Keywords: phase equilibrium, quasi-ternary phase diagram, size factor

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Mathieu S., Knittel S., Berthod P. and Vilasi M.: Corros. Sci. 60 (2012) 181-192.
  2. Jackson M.R., Bewlay B.P., Rowe R.G., Skelly D.W. and Lipsitt H.A.: JOM 48 (1996) 39-44.
  3. Smith R.: J. Less Common Met. 2 (1960) 191-206.
  4. Cheng J., Yi S. and Park J.S.: Intermetallics 23 (2012) 12-19.
  5. Matsumura Y., Fukumoto M., Hayashi S., Kasama A., Iwanaga I., Tanaka R. and Narita T.: Oxid. Met. 61 (2004) 105-124.
  6. Fukumoto M., Matsumura Y., Hayashi S., Narita T., Sakamoto K., Kasama A. and Tanaka R.: Mater. Trans. 44 (2003) 731-735.
  7. Sauthoff G.: Intermetallics 8 (2000) 1101-1109.
  8. Du Y., Chang Y.A., Gong W., Huang B., Xu H., Jin Z., Zhang F. and Chen S.-L.: Intermetallics 11 (2003) 995-1013.
  9. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 397-402.
  10. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 381-388.
  11. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 393-396.
  12. Petzow G. and Effenberg G.: Ternary alloys. A comprehensive compendium of evaluated constitutional data and phase diagrams Vol. 8 (1993) pp. 49-57.
  13. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 413.
  14. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 417.
  15. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 416.
  16. Miura S., Sekito Y., Okawa T., Yamanouchi T. and Mohri T.: Mater. Sci. Forum 783-786 (2014) 1171-1175.
  17. Stein F., Palm M. and Sauthoff G.: Intermetallics 12 (2004) 713-720.
  18. Stein F., Palm M. and Sauthoff G.: Intermetallics 13 (2005) 1056-1074.
  19. Thoma D.J. and Perepezko J.H.: J. Alloy. Compd. 224 (1995) 330-341.
  20. Zhu J.H., Liu C.T., Pike L.M. and Liaw P.K.: Metall. Mater. Trans., A 30 (1999) 1449-1452.
  21. Chu F., Thoma D.J., Kotula P.G., Gerstl S., Mitchell T.E., Anderson I.M. and Bentley J.: Acta Mater. 46 (1998) 1759-1769.
  22. Okaniwa H., Shindo D., Yoshida M. and Takasugi T.: Acta Mater. 47 (1999) 1987-1992.
  23. Raghavan V.: J. Phase Equilibria Diffus. 27 (2006) 405-407.
  24. Zhao J.-C., Jackson M.R. and Peluso L.A.: J. Phase Equilibria Diffus. 25 (2004) 152-159.
  25. Du Y., Liu S., Chang Y.A. and Yang Y.: Calphad 29 (2005) 140-148.
  26. Huai K., Guo J., Gao Q. and Yang R.: Z. Metallk. 97 (2006) 59-63.
  27. Tang L., Li S. and Gong S.: Int. J. Mod. Phys. B 24 (2010) 2898-2903.
  28. Zeumer B. and Sauthoff G.: Intermetallics 6 (1998) 451-460.
  29. Tang L.Z., Zhang Z.G., Li S.S. and Gong S.K.: Trans. Nonferrous Met. Soc. China 20 (2010) 212-216.
  30. Ellner M., Kolatschek K. and Predel B.: J. Less Common Met. 170 (1991) 171-184.
  31. Edwards A.R.: Metall. Trans. 3 (1972) 1365-1372.
  32. Anton D.L., Shah D.M., Duhl D.N. and Giamei A.F.: JOM 41 (1989) 12-17.
  33. Johnson D.R., Oliver B.F., Noebe R.D. and Whittenberger J.D.: Intermetallics 3 (1995) 493-503.
  34. Miura S. and Horiuchi T.: to be submitted to J. Japan Inst. Met. Mater.
  35. Liu C.T., Zhu J.H., Brady M.P., McKamey C.G. and Pike L.M.: Intermetallics 8 (2000) 1119-1129.
  36. Okamoto H.: J. Phase Equilib. 14 (1993) 534.
  37. Yan X., Grytsiv A., Rogl P., Schmidt H. and Giester G.: Calphad 33 (2009) 11-16.
  38. Hume-Rothery W. and Raynor G.V.: Proc. R. Soc. Lond. A 177 (1940) 27-37.
  39. Villars P. and Cenzual K.: Pearson's Crystal Data, ASM International, Materials Park, Ohio, USA, Release 2014/15.
  40. Raghavan V.: J. phase equilib. diffus. 32 (2011) 237-240.
  41. Petzow G. and Effenberg G.: Ternary alloys. A comprehensive compendium of evaluated constitutional data and phase diagrams Vol. 6 (1993) pp. 194-196.
  42. Petzow G. and Effenberg G.: Ternary alloys. A comprehensive compendium of evaluated constitutional data and phase diagrams Vol. 8 (1993) pp. 187-190.
  43. Zhao J.Y., Liu W. and Lu X.G.: Calphad 50 (2015) 82-91.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp