Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.538-545
© 2018 The Japan Institute of Metals and Materials

Grain Boundary Sliding-Induced Creep of Powder Metallurgically Produced Nb-20Si-23Ti-6Al-3Cr-4Hf

C. Seemüller and M. Heilmaier

Chair of Physical Metallurgy, Institute of Applied Materials, Karlsruhe Institute of Technology, Engelbert-Arnold-Str. 4, 76131 Karlsruhe, Germany

The multi-component alloy Nb-20Si-23Ti-6Al-3Cr-4Hf was produced by powder injection molding or hot isostatic pressing of pre-alloyed, gas-atomized powder. The resulting microstructure comprises the Nb solid solution as well as the α- and γ-modifications of Nb5Si3. Creep is evaluated in constant true stress tests at 1000 and 1100 ℃. The analysis of the creep behavior regarding its dependence on microstructural and testing parameters such as grain size, stress, and temperature reveals grain boundary sliding as the prevalent deformation mechanism. This is backed up by SEM/EBSD and TEM observations in the undeformed and deformed state. This creep mechanism was found to be a direct result of the small grain/phase sizes after powder metallurgical processing and led to a creep resistance even lower than that of a single-phase niobium-based alloy.


(Received 2017/05/15; Accepted 2017/08/14; Published 2018/03/25)

Keywords: high-temperature composite, niobium silicon base, creep mechanism, creep strength, grain boundary sliding

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Perepezko J.H.: Science 326 (2009) 1068-1069.
  2. Weiss I., Thirukkonda M. and Srinivasan R.: Mater. Res. Soc. Symp. Proc. 322 (1994)  377-386.
  3. Subramanian P.R., Mendiratta M.G. and Dimiduk D.M.: Mater. Res. Soc. Symp. Proc. 322 (1994)  491-502.
  4. Bachmann M.: Diplom Thesis, Technische Universität Darmstadt, (2012).
  5. Bewlay B.P., Jackson M.R., Zhao J.-C. and Subramanian P.R.: Metall. Mater. Trans., A 34 (2003) 2043-2052.
  6. Bewlay B.P., Jackson M.R., Zhao J.-C., Subramanian P.R., Mendiratta M.G. and Lewandowski J.J.: MRS Bull. 28 (2003) 646-653.
  7. Bewlay B.P., Jackson M.R. and Gigliotti M.F.X.: Intermetallic Compounds - Principles and Practice, vol. 3, J. H. Westbrook and R. L. Fleischer, Eds. Chichester, UK, (John Wiley & Sons, Ltd, 2002) pp. 541-560.
  8. Mitra R.: Int. Mater. Rev. 51 (2006) 13-64.
  9. Bewlay B.P., Jackson M.R. and Lipsitt H.A.: Metall. Mater. Trans., A 27 (1996) 3801-3808.
  10. Mulser M., Hartwig T., Seemüller C., Heilmaier M., Adkins N. and Wickins M.: Adv. Powder Metall. Part. Mater. 4 (2014) 8-16.
  11. Jéhanno P., Heilmaier M., Saage H., Böning M., Kestler H., Freudenberger J. and Drawin S.: Mater. Sci. Eng. A 463 (2007) 216-223.
  12. Jéhanno P., Heilmaier M., Kestler H., Boning M., Venskutonis A., Bewlay B. and Jackson M.: Metall. Mater. Trans., A 36 (2005) 515-523.
  13. Ilschner B., Hochtemperatur-Plastizität. Berlin/Heidelberg: (Springer-Verlag, 1973).
  14. Mughrabi H., Ed.: Plastic deformation and fracture of materials, vol. 6. Weinheim New York Basel Cambridge: VCH, (1993).
  15. Kamaraj M.: Eng. Sci. 28 (2003) 115-128.
  16. Subramanian P.R., Mendiratta M.G. and Dimiduk D.M.: JOM 48 (1996) 33-38.
  17. Subramanian P.R., Mendiratta M.G., Dimiduk D.M. and Stucke M.A.: Mater. Sci. Eng. A 239-240 (1997) 1-13.
  18. Nabarro F.R.N.: Report of a Conference on the Strength of Solids, London: Physical Society, (1948) p. 75.
  19. Herring C.: J. Appl. Phys. 21 (1950) 437.
  20. Coble R.L.: J. Appl. Phys. 34 (1963) 1679.
  21. Kocks U.F., Tomé C.N., Wenk H.-R., Rollet A.D. and Wright S.I.: Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge, UK, (Cambridge University Press, 1998) pp. 178-239.
  22. Vishwanadh B., Mani Krishna K.V., Revelly A.K., Samjdar I., Tewari R. and Dey G.K.: Mater. Sci. Eng. A 585 (2013) 343-355.
  23. Raabe D. and Lücke K.: Mater. Sci. Forum 157-162 (1994) 597-610.
  24. Abreu H.F.G., Tavares S.S.M., Carvalho S.S., Eduardo T.H.T., Bruno A.D.S. and Prado da Silva M.H.: Mater. Sci. Forum 539-543 (2007) 3436-3441.
  25. Bewlay B.P., Briant C.L., Sylven E.T. and Jackson M.R.: Mater. Res. Soc. Symp. Proc. 753 (2003) p. BB5.24.1-6.
  26. Bewlay B.P., Briant C.L., Sylven E.T., Jackson M.R. and Xiao G.: Mater. Res. Soc. Symp. Proc. 646 (2000) p. N2.6.1-6.
  27. Rosenkranz R., Frommeyer G. and Smarsly W.: Mater. Sci. Eng. A 152 (1992) 288-294.
  28. Subramanian P.R., Parthasarathy T.A., Mendiratta M.G. and Dimiduk D.M.: Scr. Metall. Mater. 32 (1995) 1227-1232.
  29. Hotz W., Ruedl E. and Schiller P.: J. Mater. Sci. 10 (1975) 2003-2006.
  30. Dunlop G.L. and Taplin D.M.R.: J. Mater. Sci. 7 (1972) 316-324.
  31. Einziger R.E., Mundy J.N. and Hoff H.A.: Phys. Rev. B 17 (1978) 440-448.
  32. Ablitzee D.: Philos. Mag. 35 (1977) 1239-1256.
  33. Lundy T.S., Winslow F.R., Pawel R.E. and Mchargue C.J.: Trans. Metall. AIME 233 (1965) 1533-1539.
  34. Resnick R. and Castleman L.: Trans. Am. Inst. Min. Metall. Eng. 218 (1960) 307-310.
  35. Pelleg J.: Philos. Mag. 21 (1970) 735-742.
  36. Prasad S. and Paul A.: Acta Mater. 59 (2011) 1577-1585.
  37. Milanese C., Buscaglia V., Maglia F. and Anselmi-Tamburini U.: Acta Mater. 51 (2003) 4837-4846.
  38. Fitzer E. and Schmidt F.K.: Chem. Mon. 102 (1971) 1608-1625.
  39. Jéhanno P., Heilmaier M., Saage H., Heyse H., Boening M., Kestler H. and Schneibel J.H.: Scr. Mater. 55 (2006) 525-528.
  40. Ruano O.A. and Sherby O.D.: Mater. Sci. Eng. 56 (1982) 167-175.
  41. Bürgel R., Maier H.-J. and Niendorf T.: Handbuch Hochtemperatur-Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen, 4th ed. Wiesbaden: Vieweg+Teubner Verlag, (2011).


© 2018 The Japan Institute of Metals and Materials
Comments to us :