Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.528-537
© 2018 The Japan Institute of Metals and Materials

Effects of Process Control Agents on the Mechanical Alloying Behavior of Nb-Ti-Si Based Alloy

Lijing Zhang and Xiping Guo

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China

Powder mixtures with the composition of Nb-20Ti-15Si-5Cr-3Hf-3Al (at.%) were mechanically milled in a planetary ball mill. Normal hexane (5 mass%), methyl alcohol (5 mass%) and different amount of stearic acid (0.625, 1.25, 2.5 and 5 mass%) were used respectively as the process control agent (PCA). The effects of the type and amount of PCAs on the mechanical alloying (MA) behavior of the powder mixtures have been investigated systematically. It has been shown that, compared with using 5 mass% methyl alcohol or stearic acid, ball milling with the same amount of normal hexane shows the fastest MA progress. However, the final powder particles have a coarse size as a result of severe cold welding. Ball milling with 5 mass% stearic acid shows a hyperslow MA progress due to its excessive lubrication effect. Milling with 5 mass% methyl alcohol yields a moderate MA rate and much fine particle size. However, HfC formed during milling due to the high carbon contamination of methyl alcohol. Moreover, it is found that decreasing the amount of stearic acid could accelerate the MA progress significantly. A suitable amount of PCA is necessary to restrain the excessive cold welding and avoid the formation of HfC. Finally, 1.25 mass% stearic acid is adopted as the PCA to fabricate the powder mixtures used for hot pressed sintering.


(Received 2017/04/25; Accepted 2017/06/26; Published 2018/03/25)

Keywords: mechanical alloying, process control agent, niobium-titanium-silicon based alloy, powder morphology, microstructure

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Bewlay B.P., Jackson M.R. and Lipsitt H.A.: Metall. Mater. Trans., A 27 (1996) 3801-3808.
  2. Bewlay B.P., Lewandowksi J.J. and Jackson M.R.: JOM-US 49 (1997) 44-45.
  3. Bewlay B.P., Jackson M.R., Zhao J.C., Subramanian P.R., Mendiratta M.G. and Lewandowski J.J.: MRS Bull. 28 (2003) 646-653.
  4. Bewlay B.P., Jackson M.R., Zhao J.C. and Subramanian P.R.: Metall. Mater. Trans., A 34 (2003) 2043-2052.
  5. Guo H.S. and Guo X.P.: Scr. Mater. 64 (2011) 637-640.
  6. Zhang S. and Guo X.P.: Intermetallics 64 (2015) 51-58.
  7. Sekido N., Kimura Y., Miura S., Wei F.G. and Mishima Y.: J. Alloy. Compd. 425 (2006) 223-229.
  8. Tang Y. and Guo X.P.: Scr. Mater. 116 (2016) 16-20.
  9. Fei T., Yu Y.X., Zhou C.G. and Sha J.B.: Mater. Des. 116 (2017) 92-98.
  10. Wang X.L., Wang G.F. and Zhang K.F.: Mater. Sci. Eng. A 527 (2010) 3253-3258.
  11. Yu J.L., Zhang K.F. and Wang G.F.: Intermetallics 16 (2008) 1167-1170.
  12. Zhang S. and Guo X.P.: Mater. Sci. Eng. A 638 (2015) 121-131.
  13. Zelenitsas K. and Tsakiropoulos P.: Intermetallics 13 (2005) 1079-1095.
  14. Geng J., Tsakiropoulos P. and Shao G.: Intermetallics 14 (2006) 227-235.
  15. Vellios N. and Tsakiropoulos P.: Intermetallics 15 (2007) 1529-1537.
  16. Suryanarayana C.: Prog. Mater. Sci. 46 (2001) 1-184.
  17. Speight J. G.: Lange's Handbook of Chemistry, 16th ed., (McGraw-Hill, New York, 2005) pp. 430-582.
  18. Juárez R., Suñol J.J., Berlanga R., Bonastre J. and Escoda L.: J. Alloy. Compd. 434-435 (2007) 472-476.
  19. Fathy A., Wagih A., El-Hamid M.A. and Hassan A.A.: Adv. Powder Technol. 25 (2014) 1345-1350.
  20. Molladavoudi A., Amirkhanlou S., Shamanian M. and Ashrafizadeh F.: Intermetallics 29 (2012) 104-109.
  21. Shaw L., Zawrah M., Villegas J., Luo H. and Miracle D.: Metall. Mater. Trans., A 34 (2003) 159-170.
  22. Nouri A., Hodgson P.D. and Wen C.E.: Acta Biomater. 6 (2010) 1630-1639.
  23. Shashanka R. and Chaira D.: Powder Technol. 278 (2015) 35-45.
  24. Hosseini-Gourajoubi F., Pourabdoli M., Uner D. and Raygan S.: Adv. Powder Technol. 26 (2015) 448-453.
  25. Kleiner S., Bertocco F., Khalid F.A. and Beffort O.: Mater. Chem. Phys. 89 (2005) 362-366.


© 2018 The Japan Institute of Metals and Materials
Comments to us :