Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.518-527
© 2018 The Japan Institute of Metals and Materials

Effect of Microstructural Continuity on Room-Temperature Fracture Toughness of ZrC-Added Mo-Si-B Alloys

Shunichi Nakayama1, Nobuaki Sekido1, Sojiro Uemura2, Sadahiro Tsurekawa3 and Kyosuke Yoshimi1

1Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Department of Materials Science and Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
3Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan

The room-temperature fracture toughness of ZrC-added Mo-Si-B alloys prepared using an arc-melting technique was investigated. The constituent phases of the heat-treated alloys were mainly molybdenum solid solution (Moss), Mo5SiB2 (T2), and ZrC, with a small amount of Mo2B in a few alloys. Four-point bending tests with a Chevron-notch were performed, and the average fracture-toughness values ranged from 12.4 to 20.3 MPa(m)1/2 depending on alloy composition. Here, the effects of the volume fractions of the constituent phases and the continuity of Moss on the fracture toughness are discussed. The fracture toughness improved with an increase in the volume fractions of the Moss and ZrC phases. Alloys with a higher Moss continuity exhibited higher fracture toughness, for example, the fracture toughness of 64.5Mo-3.2Si-6.5B-12.9Zr-12.9C (mol.%) was 19 MPa(m)1/2; the alloy contained a >95%-continuous Moss phase, even though it also contained 16 vol.% T2 and 23 vol.% ZrC.

[doi:10.2320/matertrans.MJ201613]

(Received 2017/10/04; Accepted 2018/02/22; Published 2018/03/25)

Keywords: molybdenum-silicon-boron alloys, zirconium carbide, microstructure, fracture toughness, continuity

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Dimiduk D.M. and Perepezko J.H.: MRS Bull. 28 (2003) 639-645.
  2. Perepezko J.H.: Science 326 (2009) 1068-1069.
  3. Schneibel J.H., Liu C.T., Easton D.S. and Carmichael C.A.: Mater. Sci. Eng. A 261 (1999) 78-83.
  4. Nieh T.G., Wang J.G. and Liu C.T.: Intermetallics 9 (2001) 73-79.
  5. Schneibel J.H.: Intermetallics 11 (2003) 625-632.
  6. Yoshimi K., Nakatani S., Nomura N. and Hanada S.: Intermetallics 11 (2003) 787-794.
  7. Alur A.P., Chollacoop N. and Kumar K.S.: Acta Mater. 52 (2004) 5571-5587.
  8. Jain P. and Kumar K.S.: Acta Mater. 58 (2010) 2124-2142.
  9. Mitra R.: Int. Mater. Rev. 51 (2006) 13-64.
  10. Meyer M.K., Kramer M.J. and Akinc M.: Intermetallics 4 (1996) 273-281.
  11. Yoshimi K., Yoo M.H., Wereszczak A.A., Borowicz S.M., George E.P. and Zee R.H.: Scr. Mater. 45 (2001) 1321-1326.
  12. Ito K., Ihara K., Tanaka K., Fujikura M. and Yamaguchi M.: Intermetallics 9 (2001) 591-602.
  13. Hayashi T., Ito K., Ihara K., Fujikura M. and Yamaguchi M.: Intermetallics 12 (2004) 699-704.
  14. Kim S. and Perepezko J.H.: J. Phase Equilibria Diffus. 27 (2006) 605-613.
  15. Ha S.-H., Yoshimi K., Maruyama K., Tu R. and Goto T.: Mater. Sci. Eng. A 552 (2012) 179-188.
  16. Schneibel J.H., Kramer M.J., Ünal Ö. and Wright R.N.: Intermetallics 9 (2001) 25-31.
  17. Schneibel J.H., Kramer M.J. and Easton D.S.: Scr. Mater. 46 (2002) 217-221.
  18. Choe H., Schneibel J.H. and Ritchie R.O.: Metall. Mater. Trans. A 34 (2003) 225-239.
  19. Kruzic J.J., Schneibel J.H. and Ritchie R.O.: Scr. Mater. 50 (2004) 459-464.
  20. Kruzic J.J., Schneibel J.H. and Ritchie R.O.: Metall. Mater. Trans. A 36 (2005) 2393-2402.
  21. Schneibel J.H., Ritchie R.O., Kruzic J.J. and Tortorelli P.F.: Metall. Mater. Trans. A 36 (2005) 525-531.
  22. Meyer M.K. and Akinc M.: J. Am. Ceram. Soc. 79 (1996) 938-944.
  23. Meyer M.K. and Akinc M.: J. Am. Ceram. Soc. 79 (1996) 2763-2766.
  24. Meyer M.K., Thom A.J. and Akinc M.: Intermetallics 7 (1999) 153-162.
  25. Akinc M., Meyer M.K., Kramer M.J., Thom A.J., Huebsch J.J. and Cook B.: Mater. Sci. Eng. A 261 (1999) 16-23.
  26. Yoshimi K., Nakatani S., Suda T., Hanada S. and Habazaki H.: Intermetallics 10 (2002) 407-414.
  27. Sakidja R., Perepezko J.H., Kim S. and Sekido N.: Acta Mater. 56 (2008) 5223-5244.
  28. Ray P.K., Ye Y.Y., Akinc M. and Kramer M.J.: J. Alloys Compd. 537 (2012) 65-70.
  29. Karahan T., Ouyang G., Ray P.K., Kramer M.J. and Akinc M.: Intermetallics 87 (2017) 38-44.
  30. Sakidja R. and Perepezko J.H.: J. Nucl. Mater. 366 (2007) 407-416.
  31. Yang Y., Bei H., Chen S., George E.P., Tiley J. and Chang Y.A.: Acta Mater. 58 (2010) 541-548.
  32. Azim M.A., Burk S., Gorr B., Christ H.-J., Schliephake D., Heilmaier M., Bornemann R. and Bolívar P.H.: Oxid. Met. 80 (2013) 231-242.
  33. Schliephake D., Azim M., Klinski-Wetzel K.V., Gorr B., Christ H.-J., Bei H., George E.P. and Heilmaier M.: Metall. Mater. Trans. A 45 (2014) 1102-1111.
  34. Azim M.A., Schliephake D., Hochmuth C., Gorr B., Christ H.-J., Glatzel U. and Heilmaier M.: JOM 67 (2015) 2621-2628.
  35. Rosales I. and Schneibel J.H.: Intermetallics 8 (2000) 885-889.
  36. Chu F., Thoma D.J., McClellan K., Peralta P. and He Y.: Intermetallics 7 (1999) 611-620.
  37. Ihara K., Ito K., Tanaka K. and Yamaguchi M.: Mater. Sci. Eng. A 329-331 (2002) 222-227.
  38. Zhang L., Pan K. and Lin J.: Intermetallics 38 (2013) 49-54.
  39. Rosenkranz R., Frommeyer G. and Smarsly W.: Mater. Sci. Eng. A 152 (1992) 288-294.
  40. Mitra R.: Metall. Mater. Trans. A 29 (1998) 1629-1641.
  41. Ashby M.F., Blunt F.J. and Bannister M.: Acta Metall. 37 (1989) 1847-1857.
  42. Miyamoto S., Yoshimi K., Ha S.-H., Kaneko T., Nakamura J., Sato T., Maruyama K., Tu R. and Goto T.: Metall. Mater. Trans. A 45 (2014) 1112-1123.
  43. Yoshimi K., Nakamura J., Kanekon D., Yamamoto S., Maruyama K., Katsui H. and Goto T.: JOM 66 (2014) 1930-1938.
  44. Nakamura J., Kanekon D. and Yoshimi K.: Mater. Lett. 180 (2016) 340-343.
  45. Yamamoto S., Yoshimi K., Kim J. and Yokoyama K.: J. Jpn. Inst. Met. Mater. 80 (2016) 51-59.
  46. Uemura S., Yamamuro T., Kim J.W., Morizono Y., Tsurekawa S. and Yoshimi K.: J. Jpn. Inst. Met. Mater. 80 (2016) 529-538.
  47. Moriyama T., Yoshimi K., Zhao M., Masnou T., Yokoyama T., Nakamura J., Katsui H. and Goto T.: Intermetallics 84 (2017) 92-102.
  48. Nakayama S. and Yoshimi K.: J. Jpn. Inst. Met. Mater. 80 (2016) 92-101.
  49. Sato A., Yeh A.-C., Kobayashi T., Yokokawa T., Harada H., Murakumo T. and Zhang J.X.: Energy Mater. Mater. Sci. Eng. Energy Syst. 2 (2007) 19-25.
  50. Lemberg J.A. and Ritchie R.O.: Adv. Mater. 24 (2012) 3445-3480.
  51. Landwehr S.E., Hilmas G.E., Fahrenholtz W.G., Talmy I.G. and DiPietro S.G.: Mater. Sci. Eng. A 497 (2008) 79-86.
  52. Min-Haga E. and Scott W.D.: J. Mater. Sci. 23 (1988) 2865-2870.
  53. Suzuki T., Nomura N., Yoshimi K. and Hanada S.: J. Jpn. Inst. Met. Mater. 64 (2000) 1082-1088.
  54. Suzuki T., Matsumoto H., Nomura N. and Hanada S.: Materia Japan 41 (2002) 150-153.
  55. Ohno I.: J. Phys. Earth 24 (1976) 355-379.
  56. Zhao M., Yoshimi K., Maruyama K. and Yubuta K.: Acta Mater. 64 (2014) 382-390.
  57. Wallace T.C., Gutierrez C.P. and Stone P.L.: J. Phys. Chem. 67 (1963) 796-801.
  58. Fedorov T.F., Kuz’ma Yu.B. and Gorshkova L.V.: Sov. Powder Metall. Met. Ceram. 4 (1965) 229-233.
  59. Sturm D., Heilmaier M., Schneibel J.H., Jéhanno P., Skrotzki B. and Saage H.: Mater. Sci. Eng. A 463 (2007) 107-114.
  60. J.H. Schneibel and H.T. Lin: Proceedings 14th Annual Conference on Fossil Energy Materials, (Oak Ridge National Laboratory, 2000) pp. 24-26.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp