Materials Transactions Online

Materials Transactions, Vol.59 No.04 (2018) pp.509-517
© 2018 The Japan Institute of Metals and Materials

Crystallography and Energetics of Second Phases and Interfaces

Masaharu Kato

Nippon Steel & Sumitomo Metal Corporation, Futtsu 293-8511, Japan

Morphology and crystallography of second phases, such as precipitates, martensites, inclusions, etc., embedded in a parent phase are discussed. The contribution of elastic strain energy is considered to find the most favorable shape of a second phase for given eigenstrains and elastic constants. Analyses based on the idea of invariant plane and invariant line deformations are conducted to discuss crystallography and energetics of second phases. Simple criteria are proposed to explain orientation relationship between the second phase and the parent phase as well as epitaxial relationship for substrate/thin film systems. Two types of stress effects are discussed; one on the morphology of the second phase and the other on variant selection.

[doi:10.2320/matertrans.M2017310]

(Received 2017/10/17; Accepted 2017/12/05; Published 2018/03/25)

Keywords: morphology, crystallography, precipitate, martensite, interface, elastic strain energy, orientation relationship, epitaxy, stress effects, variant selection

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Eshelby J.D.: Proc. R. Soc. Lond. A Math. Phys. Sci. 241 (1957) 376-396.
  2. Eshelby J.D.: Prog. Solid. Mech. 2 (1961) 89-140.
  3. Wechsler M.S., Lieberman D.S. and Read T.A.: Trans. Metall. AIME 197 (1953) 1503-1515.
  4. Bowles J.S. and Mackenzie J.K.: Acta Metall. 2 (1954) 129-137.
  5. Mackenzie J.K. and Bowles J.S.: Acta Metall. 2 (1954) 138-147.
  6. Bowles J.S. and Mackenzie J.K.: Acta Metall. 2 (1954) 224-234.
  7. Patel J.R. and Cohen M.: Acta Metall. 1 (1953) 531-538.
  8. Mura T.: Micromechanics of Defects in Solids, 2nd, revised edition, (Murtinus Nijhoff Publishers, Dordrecht, 1987).
  9. Einstein T. L.: Handbook of Crystal Growth, IA, Fundamentals, 2nd edition, ed. by T. Nishinaga, (Elsevier, Amsterdam, 2015) Chapter 5.
  10. Kato M., Fujii T. and Onaka S.: Mater. Sci. Eng. A 211 (1996) 95-103.
  11. Kato M., Fujii T. and Onaka S.: Mater. Trans., JIM 37 (1996) 314-318.
  12. Fujii T., Onaka S. and Kato M.: Scr. Metall. 34 (1996) 1529-1535.
  13. Onaka S., Kobayashi N., Fujii T. and Kato M.: Intermetallics 10 (2002) 343-346.
  14. Kobayashi N., Onaka S., Fujii T. and Kato M.: Mater. Sci. Eng. A 392 (2005) 248-253.
  15. Kanno C., Aoyagi K., Fujii T. and Kato M.: Philos. Mag. Lett. 90 (2010) 589-598.
  16. Mori T., Okabe M. and Mura T.: Acta Metall. 28 (1980) 319-325.
  17. Kato M. and Fujii T.: Acta Metall. Mater. 42 (1994) 2929-2936.
  18. Kato M., Fujii T. and Onaka S.: Acta Mater. 44 (1996) 1263-1269.
  19. Kato M., Monzen R. and Mori T.: Acta Metall. 26 (1978) 605-613.
  20. Mura T., Mori T. and Kato M.: J. Mech. Phys. Solids 24 (1976) 305-318.
  21. Bollmann W.: Philos. Mag. 16 (1967) 363-381.
  22. Bollmann W.: Philos. Mag. 16 (1967) 383-399.
  23. Christian J. W. and Crocker A. G.: Dislocations in Solids, Vol. 3, ed. by F. R. N. Nabarro, (North Holland, Amsterdam, 1980) 165-249.
  24. Ecob R.C. and Ralph B.: Proc. Natl. Acad. Sci. USA 77 (1980) 1749-1753.
  25. Hashimoto S.: Materia Japan 22 (1983) 151-157.
  26. Dahmen U.: Acta Metall. 30 (1982) 63-73.
  27. Kato M.: Tetsu-to-Hagané 78 (1992) 209-214.
  28. Kato M.: Mater. Trans., JIM 33 (1992) 89-96.
  29. Kato M., Miyazaki T. and Sunaga Y.: Scr. Metall. 11 (1977) 915-919.
  30. Mukherjee K. and Kato M.: J. de Phys., Colloq. C4 43 (1982) C4-297-C4-302.
  31. Kato M. and Shibata-Yanagisawa M.: J. Mater. Sci. 25 (1990) 194-202.
  32. Shibata-Yanagisawa M. and Kato M.: Mater. Trans., JIM 31 (1990) 18-24.
  33. Kato M. and Mishima T.: Philos. Mag. A 56 (1987) 725-733.
  34. Bain E.C.: Trans. Metall. AIME 70 (1924) 25-46.
  35. Bowles J.S. and Wayman C.M.: Metall. Trans. 3 (1972) 1113-1121.
  36. Kato M., Fukase S., Sato A. and Mori T.: Acta Metall. 34 (1986) 1179-1188.
  37. Kato M., Kubo T. and Mori T.: Acta Metall. 36 (1988) 2071-2081.
  38. Westmacott K.H., Hinderberger S. and Dahmen U.: Philos. Mag. A 81 (2001) 1547-1578.
  39. Pineau A.: Acta Metall. 24 (1976) 559-564.
  40. Onaka S., Suzuki Y., Fujii T. and Kato M.: Scr. Metall. 38 (1998) 783-788.
  41. Onaka S., Fujii T., Suzuki Y. and Kato M.: Mater. Sci. Eng. A 285 (2000) 246-252.
  42. Mori T.: Mater. Trans. 44 (2003) 901-906.
  43. Mori T.: Materia Japan 55 (2016) 528-531.
  44. Kato M. and Pak H.-r.: Phys. Status Solidi 130 (1985) 421-430 (b).
  45. Kato M. and Pak H.-r.: Phys. Status Solidi 123 (1984) 415-424 (b).
  46. Kato M. and Mori T.: Acta Metall. 24 (1976) 853-860.
  47. Kato M. and Mori T.: Acta Metall. 25 (1977) 951-956.
  48. Sato A., Kato M., Sunaga Y., Miyazaki T. and Mori T.: Acta Metall. 28 (1980) 367-376.
  49. Higo Y., Lecroisey F. and Mori T.: Acta Metall. 22 (1974) 313-323.
  50. Kurdjumov G. and Sachs G.: Z. Phys. 64 (1930) 325-343.
  51. Bogers A.J. and Burgers W.G.: Acta Metall. 12 (1964) 255-261.
  52. Eto T., Sato A. and Mori T.: Acta Metall. 26 (1978) 499-508.
  53. Tanaka Y., Sato A. and Mori T.: Acta Metall. 26 (1978) 529-540.
  54. Sato A. and Kato M.: Tetsu-to-Hagané 69 (1983) 1531-1539.
  55. Shibata M., Kato M., Seto H., Noma T., Yoshimura M. and Somiya S.: J. Mater. Sci. 22 (1987) 1432-1436.
  56. Sato A., Katsuta S. and Kato M.: Acta Metall. 36 (1988) 633-640.
  57. Kato M., Fujii T., Hoshino Y. and Mori T.: J. Jpn. Inst. Metals 56 (1992) 865-872.
  58. Monzen R. and Kato M.: ISIJ Int. 33 (1993) 898-902.
  59. Kato M., Onaka S. and Fujii T.: Sci. Technol. Adv. Mater. 2 (2001) 375-380.
  60. Fujii T., Ogawa H., Onaka S. and Kato M.: J. Jpn. Inst. Metals 66 (2002) 989-996.
  61. Fujii T., Onaka S. and Kato M.: Materia Japan 43 (2004) 925-930.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp