Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.88-97
© 2017 The Mining and Materials Processing Institute of Japan

Effective Alloying Treatment for Platinum Using Iron Chloride Vapor

Yu-ki Taninouchi1 and Toru H. Okabe1

1Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

An effective alloying treatment for Pt using FeClx (x = 2, 3) vapor was demonstrated towards developing a novel recovery process for platinum group metals (PGMs) in catalyst scrap. Suitable reaction conditions were discussed from the perspective of thermodynamics, and its validity was confirmed experimentally. When pure Pt samples were reacted with FeCl2 vapor at 1200 K under the coexistence of metallic Fe, an Fe-Pt alloy showing ferromagnetism was easily formed, even though the samples were not in physical contact with the metallic Fe. On the basis of thermodynamic considerations, alloying of Pt mainly proceeds via the disproportionation of FeCl2 vapor, with the gaseous phase containing FeClx acting as the medium to transport Fe from the metallic Fe to the Pt samples. When the alloyed sample was kept under FeCl3 vapor at 1200 K, Fe was removed and ferromagnetism was lost. Therefore, it is concluded that FeCl2 vapor treatment under the coexistence of Fe is a feasible and useful technique for alloying Pt and forming a ferromagnetic Fe-Pt alloy. The results obtained in this study indicate that treatment with FeCl2 vapor followed by magnetic separation has potential as an effective technique for concentrating PGMs directly from catalyst scrap.


(Received 2017/07/28; Accepted 2017/10/16; Published 2017/12/25)

Keywords: platinum, iron chloride, iron-platinum alloy, alloying treatment, recycling, ferromagnetism

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. F. Habashi (ed.): Handbook of Extractive Metallurgy (VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1997) vol. III, pp. 1269-1326.
  2. F. K. Crundwell, M. S. Moats, V. Ramachandran, T. G. Robinson, and W. G. Davenport: Extractive Metallurgy of Nickel, Cobalt and Platinum-Group Metals (Elsevier, Oxford, UK, 2011).
  3. K. Nose and T.H. Okabe: in Treatise on Process Metallurgy, Volume 3: Industrial Processes (Elsevier, London, UK, 2013) pp. 1071-1097.
  4. PGM Market Report May 2016 Summary of Platinum Supply & Demand in 2015 (Johnson Matthey Plc., 2016) Accessed 2016/5/26.
  5. R. K. Mishra: Proceedings of the 17th International Precious Metals Conference (International Precious Metals Institute, 1993) 449-474.
  6. H. Dong, J. Zhao, J. Chen, Y. Wu and B. Li: Int. J. Miner. Process. 145 (2015) 108-113.
  7. F.L. Bernardis, R.A. Grant and D.C. Sherrington: React. Funct. Polym. 65 (2005) 205-217.
  8. S. Suzuki, M. Ogino and T. Matsumoto: Journal of MMIJ 123 (2007) 734-736 (in Japanese).
  9. M. Benson, C.R. Bennett, J.E. Harry, M.K. Patel and M. Cross: Resour. Conserv. Recycling 31 (2000) 1-7.
  10. S. Owada, H. Seshimo, M. Miyashita, and K. Fujiwara: Proceedings of the 2nd International Symposium on East Asian Resources Recycling Technology (1993) 69-77.
  11. S. Owada, Y. Tsubuku, and H. Nakayama: Proceedings of MMIJ Spring Meeting, (The Mining and Materials Processing Institute of Japan, 1994) 282-283 (in Japanese).
  12. S. Owada and K. Shinoda: Proceedings of MMIJ Spring Meeting (The Mining and Materials Processing Institute of Japan, 2006) 69-70 (in Japanese).
  13. W. Kim, B. Kim, D. Choi, T. Oki and S. Kim: J. Hazard. Mater. 183 (2010) 29-34.
  14. G. Liu, T. Ichinose, A. Tokumaru and S. Owada: Mater. Trans. 55 (2015) 978-985.
  15. G. Liu, A. Tokumura and S. Owada: Resources Processing 60 (2013) 28-35.
  16. T. H. Okabe and J. Mitsui: Japan Patent, P5946034 (2016).
  17. Y. Taninouchi, A. Suzue, and T. H. Okabe: Proceedings of 53rd Annual Conference of Metallurgists (COM 2014) (Canadian Institute of Mining, Metallurgy and Petroleum, 2014).
  18. Y. Taninouchi, T. Watanabe and T.H. Okabe: Mater. Trans. 58 (2017) 410-419.
  19. Y. Taninouchi, T. Watanabe and T.H. Okabe: Metall. Mater. Trans., B 48 (2017) 2027-2036.
  20. Y. Taninouchi and H. Toru Okabe: in Rare Metal Technology 2017 (Proceedings of the TMS 2017 Annual Meeting & Exhibition (TMS2017)), ed. by H. Kim, S. Alam, N. Neelameggham, H. Oosterhof, T. Ouchi, X. Guan, (Springer, New York, 2017) pp. 119-127.
  21. Y. Danzaki and T. Ashino: Anal. Sci. 17 (2001) 1011-1013.
  22. I. Barin: Thermochemical Data of Pure Substance, 3rd ed., (VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1995).
  23. P. Fredriksson and B. Sundman: Calphad 25 (2001) 535-548.
  24. P. Franke and D. Neusch├╝tz (eds.): Binary systems. Part 3: Binary Systems from Cs-K to Mg-Zr, (Springer Berlin Heidelberg, Germany, 2005).
  25. P. Fredriksson and S. Seethraman: Scand. J. Metall. 30 (2001) 258-264.
  26. H. Okamoto (ed.): Phase Diagrams of Binary Iron Alloys, (ASM International, Materials Park, Ohio, 1993) pp. 330-336.
  27. K. Osaka, D. Sakaki and T. Takama: Jpn. J. Appl. Phys. 41 (2002) L155-L157.
  28. Y. Nose, A. Kushida, T. Ikeda, H. Nakajima, K. Tanaka and H. Numakura: Mater. Trans. 44 (2003) 2723-2731.


© 2017 The Mining and Materials Processing Institute of Japan
Comments to us :