Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.47-52
© 2017 The Japan Institute of Metals and Materials

Glass-Transition-Like Behavior of Grain Boundaries in Nanocrystalline Gold

Terigele Xi1, Takahiro Sato1, Ryoma Suzuki1 and Hisanori Tanimoto1

1Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan

Characteristic property changes were observed for high density and high purity nanocrystalline (n-) Au prepared by the gas deposition method. The increase in internal friction with a modulus defect started at ~180 K and became steep above 200 K. An increase in endothermic heat flow began at ~170 K. The electrical resistivity showed a deviation from a linear increase with the temperature at ~130 K. All the characteristic changes were reproduced by the repetition of the thermal cycle below 300 K, but the amounts diminished after the grain growth. These characteristic temperature changes indicate a glass-transition-like behavior of the grain boundaries in n-Au.

[doi:10.2320/matertrans.M2017270]

(Received 2017/09/04; Accepted 2017/10/26; Published 2017/12/25)

Keywords: nanocrystalline metals, grain boundaries, thermal property, electrical resistivity, glass transition

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci. 51 (2006) 427-556.
  2. G.W. Nieman, J.R. Weertman and R.W. Siegel: Scr. Metall. 23 (1989) 2013-2018.
  3. J.R. Weertman: Mater. Sci. Eng. A 166 (1993) 161-167.
  4. R.A. Masumura, P.M. Hazzledine and C.S. Pande: Acta Mater. 46 (1998) 4527-4534.
  5. H. Tanimoto, N. Yagi, T. Yamada, H. Mizubayashi, Characterization and Mechanical Properties of High-Density Nanocrystalline Copper, Proc. of Int. Conf. on Advanced Technology in Experimental Mechanics 2003 (ATEM'03), Nagoya Congress Center, Nagoya, Japan, 10-12 Sept., 2003, ed. by Y. Akiniwa et al., OS06W0399(6 pages).
  6. S. Takeuchi: Scr. Mater. 44 (2001) 1483-1487.
  7. G.J. Tucker and D.L. McDowell: Int. J. Plast. 27 (2011) 841-857.
  8. H. Zeng, Y. Wu, J. Zhang, C. Kuang, M. Yue and S. Zhou: Prog. Nat. Sci. 23 (2013) 18-22.
  9. L.H. Qian, Q.H. Lu, W.J. Kong and K. Lu: Scr. Mater. 50 (2004) 1407-1411.
  10. K. Inoue, M. Saito, C. Chen, M. Kotani and Y. Ikuhara: Microscopy (Oxf.) 65 (2016) 479-487.
  11. K. Inoue, B. Feng, N. Shibata, M. Kotani and Y. Ikuhara: J. Mater. Sci. 52 (2017) 4278-4287.
  12. H. Zhang, D.J. Srolovitz, J.F. Douglas and J.A. Warren: Proc. Natl. Acad. Sci. USA 106 (2009) 7735-7740.
  13. M. Tang, W.C. Carter and R.M. Cannon: J. Mater. Sci. 41 (2006) 7691-7695.
  14. T. Frolov, D.L. Olmsted, M. Asta and Y. Mishin: Nat. Commun. 4 (2013) 1899.
  15. P. Keblinski, S.R. Phillpot, D. Wolf and H. Gleiter: Phys. Rev. Lett. 77 (1996) 2965.
  16. P. Keblinski, S.R. Phillpot, D. Wolf and H. Gleiter: Acta Mater. 45 (1997) 987-998.
  17. D. Wolf: Curr. Opin. Solid State Mater. Sci. 5 (2001) 435-443.
  18. K.H. Nagamanasa, S. Gokhale, R. Ganapathy and A.K. Sood: Proc. Natl. Acad. Sci. USA 108 (2011) 11323-11326.
  19. S. Sakai, H. Tanimoto and H. Mizubayashi: Acta Mater. 47 (1998) 211-217.
  20. H. Tanimoto, K. Mutou, Y. Hosonuma, K. Yamamoto and H. Mizubayashi: Mater. Sci. Eng. A 521-522 (2009) 295-298.
  21. S. Okuda, F. Tang, H. Tanimoto and Y. Iwamoto: J. Alloys Comp. 211-212 (1994) 494-497.
  22. H. Tanimoto: Solid State Phenom. 184 (2012) 42-51.
  23. N. Yagi, A. Rikukawa, H. Mizubayashi and H. Tanimoto: Phys. Rev. B 74 (2006) 144105.
  24. H.P. Klug and L.E. Alexander: X-ray diffraction procedures, second ed.,(Wiley, New York, 1974)pp. 661-665.
  25. N.C. Halder and C.N.J. Wagner: Acta Crystallogr. 20 (1966) 312-313.
  26. R. Birringer, M. Hoffmann and P. Zimmer: Phys. Rev. Lett. 88 (2002) 206104.
  27. G.K. Rane, U. Welzel, S.R. Meka and E.J. Mittemeijer: Acta Mater. 61 (2013) 4524-4533.
  28. A.K. Srivastav, N. Chawake and B.S. Murty: Scr. Mater. 98 (2015) 20-23.
  29. H. Tanimoto, S. Sakai, E. Kita and H. Mizubayashi: Mater. Trans. 44 (2003) 94-103.
  30. K. Zhang, J.R. Weertman and J.A. Eastman: Appl. Phys. Lett. 87 (2005) 061921.
  31. B. Wang, M.T. Alam and M.A. Haque: Scr. Mater. 71 (2014) 1-4.
  32. M. Grewer, J. Markmann, R. Karos, W. Arnold and R. Birringer: Acta Mater. 59 (2011) 1523-1529.
  33. M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe and R. Birringer: Acta Mater. 56 (2008) 4255-4266.
  34. N. Yagi, A. Ueki, H. Mizubayashi and H. Tanimoto: J. Metastable Nanocryst. Mater. 24-25 (2005) 503-506.
  35. Y. Kabe, H. Tanimoto and H. Mizubayashi: Mater. Trans. 45 (2004) 119-124.
  36. H. Mizubayashi, J. Matsuno and H. Tanimoto: Scr. Mater. 41 (1999) 443-448.
  37. A. S. Nowick and Berry, B. S., Anelastic Relaxation in Crystalline Solid, Academic Press, New York, (1972), p. 436.
  38. A.K. Maier, D. Mari, I. Tkalcec and R. Schaller: Arch. Metall. Mater. 60 (2015) 377-380.
  39. A.-K. Maier, D. Mari, I. Tkalcec and R. Schaller: Acta Mater. 74 (2014) 132-140.
  40. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics, ed. by K.-H. Hellwege and A. M. Hellwege (Springer-Verlag, 1979) Vol. 11, p. 9.
  41. G. Fantozzi, C. Esnouf, W. Benoit and I.G. Ritchie: Prog. Mater. Sci. 27 (1982) 311-451.
  42. O. Haruyama, H. Kimura, N. Nishiyama and A. Inoue: Mater. Sci. Eng. A 304-306 (2001) 740-742.
  43. L.-F. Wang, Q.-D. Zhang, Z.-Y. Huang, X. Cui and F.-Q. Zu: J. Non-Cryst. Solids 406 (2014) 127-132.
  44. J. Ederth, L.B. Kish, E. Olsson and C.G. Granqvist: J. Appl. Phys. 88 (2000) 6578-6582.
  45. D.P. Aji and G.P. Johari: J. Chem. Phys. 141 (2014) 224508.
  46. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, (Oxford University Press, Oxford, 1996)p. 384.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp