Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.27-32
© 2017 The Japan Institute of Metals and Materials

Influence of NiO Reduction on Residual Strain in NiO/Ni-YSZ

Fumitada Iguchi1, Sarana Akrasevee2 and Yutaro Miyoshi1

1Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Department of Engineering, Tohoku University, Sendai 980-8579, Japan

The residual strains in the composites of nickel oxide (NiO) and yttria-stabilized zirconia (YSZ) and in the cermets of reduced nickel (Ni) and YSZ, which were used as anodes for solid oxide fuel cells (SOFCs), were measured using X-ray diffraction. The influence of Ni reduction on the residual strain was evaluated. Tensile and compressive residual strains caused by thermal strain were observed in NiO and YSZ phases, respectively. They clearly depended on the volume fraction of NiO and YSZ, and changed proportionally. The YSZ phase in the Ni-YSZ cermets also showed a similar dependence on the volume fraction of NiO. The compressive strain increased as the NiO increased; however, a local maximum was observed for NiO 50 vol%, beyond which it decreased with increasing amount of NiO. Compressive strain in the YSZ phase in the Ni-YSZ with NiO of 60 vol%, which is a common volume fraction of SOFC anodes, was only 30% of that in the NiO-YSZ. Plastic deformation of the Ni phase near the interfaces, and relaxation of the compressive strain in the YSZ phase were responsible for this phenomenon. This revealed the difference in the residual strain in the YSZ phase after reduction.

[doi:10.2320/matertrans.MB201703]

(Received 2017/07/27; Accepted 2017/09/28; Published 2017/12/25)

Keywords: residual strain, residual stress, XRD, nickel oxide reduction, volume fraction dependence

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. T. Kawada, S. Watanabe, S. Hashimoto, T. Sakamoto, A. Unemoto, M. Kurumatani, K. Sato, F. Iguchi, K. Yashiro, K. Amezawa, K. Terada, M. Kubo, H. Yugami, T. Hashida and J. Mizusaki: ECS Trans. 25 (2009) 467-472.
  2. A. Atkinson and A. Selcuk: Solid State Ionics 134 (2000) 59-66.
  3. A. Atkinson, A. Selsuk, Proceedings - Electrochemical Society 97-40 (1997) 671-680.
  4. A. Atkinson and B. Sun: Mater. Sci. Technol. 23 (2007) 1135-1143.
  5. K. Kanamura, S. Yoshioka and Z. Takehara: Bull. Chem. Soc. Jpn. 65 (1992) 309-313.
  6. A. Nakajo, C. Stiller, G. Harkegard and O. Bolland: J. Power Sources 158 (2006) 287-294.
  7. A. Nakajo, Z. Wuillemin, J. Van Herle and D. Favrat: J. Power Sources 193 (2009) 203-215.
  8. A. Nakajo, Z. Wuillemin, J. Van Herle and D. Favrat: J. Power Sources 193 (2009) 216-226.
  9. J.B. Wachtman and D.G. Lam: J. Am. Ceram. Soc. 42 (1959) 254-260.
  10. T. Masaki, K. Nakajima and K. Shinjo: J. Mater. Sci. Lett. 5 (1986) 1115-1118.
  11. T. Ishida, F. Iguchi, K. Sato, T. Hashida and H. Yugami: Solid State Ionics 176 (2005) 2417-2421.
  12. H. Kitahara, F. Iguchi, T. Okuda, N. Sata, T. Kawada and H. Yugami: Transactions of the Japan Society of Mechanical EngineersPart A 78 (2012) 1198-1207.
  13. K. Sato, T. Hashida, K. Suzuki, H. Yugami, T. Kawada and J. Mizusaki: J. Japan Soc. Powder Powder Metall. 52 (2005) 840-844.
  14. K. Sato, T. Hashida, K. Yashiro, H. Yugami, T. Kawada and J. Mizusaki: J. Ceram. Soc. Jpn. 113 (2005) 562-564.
  15. K. Sato, H. Yugami and T. Hashida: Trans. Mater. Res. Soc. Jpn. 29 (2004) 1471-1474.
  16. K. Sato, H. Yugami and T. Hashida: J. Mater. Sci. 39 (2004) 5765-5770.
  17. F. Iguchi, Y. Endo, T. Ishida, T. Yokobori, H. Yugami, T. Otake, T. Kawada and J. Mizusaki: Solid State Ionics 176 (2005) 641-644.
  18. K. Hilpert, R.W. Steinbrech, F. Boroomand, E. Wessel, F. Meschke, A. Zuev, O. Teller, H. Nickel and L. Singheiser: J. Eur. Cera. Soc. 23 (2003) 3009-3020.
  19. K. Fujita, T. Somekawa, T. Hatae and Y. Matsuzaki: J. Power Sources 196 (2011) 9022-9026.
  20. F. Iguchi, S. Onuki, M. Shimizu, T. Kawada and H. Yugami: J. Ceram. Soc. Jpn. 125 (2017) 213-217.
  21. H. Sumi, Y. Mizutani, Y. Doi, Y. Akiniwa and K. Tanaka: J. Soc. Mater. Sci. Jpn. 54 (2005) 440-446.
  22. K. Tanaka, Y. Doi, Y. Akiniwa, H. Sumi, Y. Mizutani and K. Ukai: J. Soc. Mater. Sci. Jpn. 54 (2005) 1080-1086.
  23. H. Yakabe, Y. Baba, T. Sakurai and Y. Yoshitaka: J. Power Sources 135 (2004) 9-16.
  24. H. Yakabe, Y. Baba, T. Sakurai, M. Satoh, I. Hirosawa and Y. Yoda: J. Power Sources 131 (2004) 278-284.
  25. D. Sarantaridis, R.J. Chater and A. Atkinson: J. Electrochem. Soc. 155 (2008) B467-B472.
  26. M. Radovic and E. Lara-Curzio: Acta Mater. 52 (2004) 5747-5756.
  27. M. Pihlatie, A. Kaiser and M. Mogensen: J. Eur. Cera. Soc. 29 (2009) 1657-1664.
  28. S. Biswas, T. Nithyanantham, N.T. Saraswathi and S. Bandopadhyay: J. Mater. Sci. 44 (2009) 778-785.
  29. J. Laurencin, G. Delette, F. Usseglio-Viretta and S. Di Iorio: J. Eur. Cera. Soc. 31 (2011) 1741-1752.
  30. J. Laurencin, G. Delette, F. Usseglio-Viretta, S. Di Iorio and F. Lefebvre-Joud: ECS Trans. 35 (2011) 1463-1471.
  31. M. Saied, K. Ahmed, M. Ahmed, M. Nemat-Alla and M. El-Sebaie: Int. J. Hydrogen Energ. 42 (2017) 15887-15902.
  32. M. Ishigame and E. Yoshida: Solid State Ionics 23 (1987) 211-218.
  33. L.P. Ferroni and G. Pezzotti: J. Am. Ceram. Soc. 85 (2002) 2033-2038.
  34. J. Laurencin, G. Delette, F. Lefebvre-Joud and A. Dupeux: J. Eur. Cera. Soc. 28 (2008) 1857-1869.
  35. C. Liu, A.M. Huntz and J.L. Lebrun: Mater. Sci. Eng. A 160 (1993) 113-126.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp