Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.23-26
© 2017 The Japan Institute of Metals and Materials

Anisotropy of Fracture Toughness of Stabilized Zirconia Investigated by Nano-Identation Method

Hideaki Ito1, Kazuhisa Sato2, Atsushi Unemoto1, Shin-ichi Hashimoto1, Koji Amezawa3 and Tatsuya Kawada1

1Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
2Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
3Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

Nano-indentation tests with a Vickers-type diamond tip were carried out on the {100} surface of a single crystal of 10 mol% yttria-stabilized zirconia (10YSZ), (Y2O3)0.1(ZrO2)0.9. By changing the contact angle of the indentation tip against the single crystal sample, the fracture toughness of 10YSZ was investigated as a function of the crystal orientation from <100> to <110> on the {100} surface. It was empirically shown that the fracture toughness of 10YSZ is anisotropic. The fracture toughness of 10YSZ was lowest in the direction of <100> among investigated orientations. This result suggests that mechanical failures in 10YSZ may occur preferentially along the direction of <100>.

[doi:10.2320/matertrans.MB201705]

(Received 2017/08/07; Accepted 2017/09/21; Published 2017/12/25)

Keywords: yttria-stabilized zirconia, nano-indentation, fracture toughness, anisotropy

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. H.M. Kandil, J.D. Greiner and J.F. Smith: J. Am. Ceram. Soc. 67 (1984) 341.
  2. K. Kurosaki, D. Setoyama, J. Matsunaga and S. Yamanaka: J. Alloy. Compd. 386 (2005) 261.
  3. M. Fujikane, M. Setoyama, S. Nagao, R. Nowak and S. Yamanaka: J. Alloy. Compd. 431 (2007) 250.
  4. R.P. Ingel, R.W. Rice and D. Lewis: J. Am. Ceram. Soc. 65 (1982) C108.
  5. R.P. Ingel, D. Lewis, B.A. Bender and R.W. Rice: J. Am. Ceram. Soc. 65 (1982) C150.
  6. R.P. Ingel and D. Lewis: J. Am. Ceram. Soc. 71 (1988) 265.
  7. A. Pajares, F. Guiberteau, A. Dominguez-Rodriguez and A.H. Heuer: J. Am. Ceram. Soc. 71 (1988) C332.
  8. A. Pajares, F. Guiberteau, A. Dominguez-Rodriguez and A.H. Heuer: J. Am. Ceram. Soc. 74 (1991) 859.
  9. G.A. Gogotsi, S.N. Dub, E.E. Lomonova and B.I. Ozersky: J. Eur. Cera. Soc. 15 (1995) 405.
  10. W. Araki, T. Koshikawa, A. Yamaji and T. Adachi: Solid State Ionics 180 (2009) 1484.
  11. S. Giraud and J. Canel: J. Eur. Cera. Soc. 28 (2008) 77.
  12. T. Kushi, K. Sato, A. Unemoto, S. Hashimoto, K. Amezawa and T. Kawada: J. Power Sources 196 (2011) 7989.
  13. T. Kushi, K. Sato, A. Unemoto, K. Amezawa, T. Kawada, T. Matsuyama, M. Nakamura, T. Shimazaki, M. Kubo, Extended Abstract of The 18th Sym. Solid Oxide Fuel Cells in Japan (2009) 162.
  14. H. Ito, K. Sato, A. Unemoto, K. Amezawa, T. Kawada, Proceedings of the ASME 2010 Eighth International Fuel Cell Science, Engineering and Technology Conference, FuelCell2010 (2010) 33158.
  15. W.C. Oliver and G.M. Pharr: J. Mater. Res. 7 (1992) 1564.
  16. G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc. 64 (1981) 533.
  17. P. Chantikul, G.R. Anstis, B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc. 64 (1981) 539.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp