Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.19-22
© 2017 The Japan Institute of Metals and Materials

Investigation of the Electrical Properties in Indium and Yttrium-Doped Barium Zirconate Based Proton Conducting Perovskites

Young-Sung Lee1, Yasuhiro Takamura2, Yi-Hsuan Lee1, Kwati Leonard1 and Hiroshige Matsumoto1, 3

1International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
2Department of Hydrogen Energy Systems, Kyushu University, Fukuoka 819-0395, Japan
3Next-Generation Fuel Cell Research Center (Next-FC), Kyushu University, Fukuoka 819-0395, Japan

The influences of In- and Y-doping on the electrical conduction properties of barium zirconate were investigated. The electrical conductivity measured on of BaZr1−xyInxYyO3−δ (x = 0, 0.1, 0.2 and y = 0, 0.1, 0.2) could be understood that yttrium doping causes high bulk conductivity and indium doping leads to lowering activation energy of the grain boundary. Co-doping of yttrium and indium promotes the enhancement effect of improving the bulk conductivity and lowering of activation energy, and it is thus expected that the co-doping with yttrium and indium can work for controlling the bulk and grain boundary conduction specifically in the materials.


(Received 2017/06/09; Accepted 2017/06/28; Published 2017/12/25)

Keywords: proton conductor, electrical conductivity, perovskite, co-doping

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki and H. Suzuki: Solid State Ionics 61 (1993) 65-69.
  2. K.D. Kreuer: Annu. Rev. Mater. Res. 33 (2003) 333-359.
  3. K.H. Ryu and S.M. Haile: Solid State Ionics 125 (1999) 355-367.
  4. R.C.T. Slade, S.D. Flint and N. Singh: Solid State Ionics 82 (1995) 135-141.
  5. K. Bae, D.Y. Jang, H.J. Jung, J.W. Kim, J.W. Son and J.H. Shim: J. Pow. Sour. 248 (2014) 1163-1169.
  6. W. Sun, Z. Zhu, Z. Shi and W. Liu: J. Pow. Sour. 229 (2013) 95-101.
  7. Y. Yamazaki, R. Hernandez-Sanchez and S. Haile: Chem. Mater. 21 (2009) 2755-2762.
  8. H.G. Bohn and T. Schober: J. Am. Ceram. Soc. 83 (2000) 768-772.
  9. F. Iguchi, T. Yamada, N. Sata, T. Tsurui and H. Yugami: Solid State Ionics 177 (2006) 2381-2384.
  10. J. Tong, D. Clark, L. Bernau, M. Sanders and R. O'Hayre: J. Mater. Chem. 20 (2010) 6333-6341.
  11. S. Kim and J. Maier: J. Electrochem. Soc. 149 (2002) J73-J83.
  12. F. Iguchi, N. Sata and H. Yugami: J. Mater. Chem. 20 (2010) 6265-6270.
  13. S. Imashuku, T. Uda, Y. Nose, G. Taniguchi, Y. Ito and Y. Awakura: J. Electrochem. Soc. 156 (2009) B1-B8.
  14. L. Bi, E. Fabbri, Z. Sun and E. Traversa: Solid State Ionics 196 (2011) 59-64.
  15. K.D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock and J. Maier: Solid State Ionics 145 (2001) 295-306.
  16. R.D. Shannon: Acta Crystallogr. A 32 (1976) 751-767.
  17. F. Iguchi, N. Sata, T. Tsurui and H. Yugami: Solid State Ionics 178 (2007) 691-695.
  18. Z. Sun, E. Fabbri, L. Bi and E. Traversa: Phys. Chem. Chem. Phys. 13 (2011) 7692-7700.


© 2017 The Japan Institute of Metals and Materials
Comments to us :