Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.129-135
© 2017 The Japan Institute of Metals and Materials

An Improved H2-Gas Pressure Operated LaNi5 Powder-Dispersed Polyurethane/Titanium 2-Layer Actuator with Reversible Giant and Rapid Expansion by Hydrogenation

Yoshitake Nishi1, 2, Junya Ohkawa1, Michael C. Faudree1, Masae Kanda1, 2, 3, Kaori Yuse2, Daniel Guyomar2 and Haru-Hisa Uchida4

1Graduate School of Engineering, Tokai University, Hiratsuka 259-1292, Japan
2Laboratoire de Génie Electrique et Ferroélectricité (LGEF), Institut National des Sciences Appliquées de Lyon (INSA Lyon), 69621 Villeurbanne Cedex, France
3Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Kasugai 487-8501, Japan
4School of Human Development, Tokai University, Hiratsuka 259-1292, Japan

A unimorph 2-layer (PU:LaNi5/Ti) actuator consisting of a driving composite sheet with large expansion of polyurethane (PU) dispersed with powder mixture of hydrogen storage alloy of 35 vol%-LaNi5 and Pd-Al2O3 catalyst prepared by solution cast method, and a 5 μm thick Ti sheet exhibited reversible and giant rapid bending motion when subjected to hydrogen atmosphere. Reversible motion was achieved below 0.20 MPa-H2 pressure where maximum strain (εmax) values on vertical and horizontal directions were more than 2400 and 1800 ppm, respectively about 1.6 times larger than that reported (1520 and 1120 ppm) for the same actuator PU:LaNi5/Cu with 10 μm thick copper (Cu) sheet. Moreover, the maximum responsiveness (dε/dt)max by hydrogenation of cyclic motion of the PU:LaNi5/Ti was higher than that of the PU:LaNi5/Cu. The increased (dε/dt)max values mostly corresponded to decreasing elastic load resistivity (dF/dε). These were due to Ti having higher stiffness and strength than Cu allowing thinner 5 μm sheet. Caution for safety is advised since values presented herein may be different when applying the actuator to zero gravity environments.


(Received 2017/07/07; Accepted 2017/10/13; Published 2017/12/25)

Keywords: hydrogen storage alloy, polyurethane, titanium, actuator

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. J.J.G. Willems: Philips J. Res. 39 (1984) 1-94.
  2. Y. Nishi, H.-H. Uchida and T. Honjyo: Mater. Trans. 45 (2004) 2902-2905.
  3. Y. Nishi, H.-H. Uchida and T. Honjyo: Mater. Trans. 46 (2005) 126-129.
  4. Y. Nishi, K. Numazaki and H.-H. Uchida: Mater. Trans. 48 (2007) 2964-2968.
  5. Y. Nakamura, K. Sato, M. Kato, K. Oguro, and I. Uehara: Hydrogen Energy Processes, Ed. By T.N. Veziroglu et al., (IAHE, vol. 11th, No. 2, 1996) 1287-1297.
  6. B. Kim, N. Motai, H. Yabe, H.-H. Uchida and Y. Nishi: Proc. 6th Jpn.-Korea Joint Sympo. on Hydrogen Energy, (2001) pp. 189-194.
  7. B. Kim, N. Motai, H. Yabe, H.-H. Uchida and Y. Nishi: J. Adv. Sci. 14 (2002) 15-16.
  8. Y. Nishi, H.-H. Uchida, H. Yabe, B. Kim and T. Ogasawara: J. Intelligent Materials and Structure 17 (2006) 709-711.
  9. Y. Nishi, T. Ogasawara and H.-H. Uchida: Mater. Trans. 48 (2007) 2715-2717.
  10. Y. Nishi, J. Okawa, M. Kanda, A. Shimazu, R. Suenaga, Y. Ebihara, D. Kubo, H.-H. Uchida, K. Yuse and D. Guyomar: Mater. Trans. 50 (2009) 2460-2465.
  11. J. Okawa, M. Kanda, K. Yuse, H-H. Uchida, D. Guyomar and Y. Nishi: Mater. Trans. 51 (2010) 994-1001.
  12. The Ceramic Society of Japan: Handbook of Ceramics (2nd Edition), (Gihodo Shuppan,Tokyo,2002) p.312.
  13. H. Banse, G. Glauner-Breitinger, E. Hett, E. Hoffmann, K. Krohn, C. Linke-Schwelien, M. Mühling, A. Neuber and G. Pietsch-Wilcke : Gmelins Handbuch der Anorganischen Chemie System-Nummer 65 Palladium Lieferung 1, (Verlag Chemie Gmbh, Weinheim, 1968) p.31.


© 2017 The Japan Institute of Metals and Materials
Comments to us :