Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.123-128
© 2017 The Japan Institute of Metals and Materials

Comparison of Tensile Properties of Bulk Nanocrystalline Ni-W Alloys Electrodeposited by Direct, Pulsed, and Pulsed-Reverse Currents

Isao Matsui1 and Naoki Omura1

1Structural Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan

The effects of current types on the microstructure and tensile properties of electrodeposited bulk nanocrystalline Ni-W alloys were studied. We electrodeposited bulk Ni-W alloys using direct current, pulsed current, and pulsed-reverse current. We measured the W content of the resulting samples to be in the range of 0.8-2.2 at%. An increase in the peak current density or the use of a reverse current reduced the W content. The reduction of W content increased the grain size from 26 to 40 nm. The hardness and yield strength increased as the grain size decreased. However, tensile elongation showed no dependence on grain size or W content. Most alloys exhibited a similar uniform elongation of approximately 5%, while the local elongation varied from 0.1% to 6.9%. The application of a pulsed current increased the peak current density and reduced the tensile elongation. The use of a reverse current stripped the surface of deposits formed during electrodeposition, resulting in higher tensile elongation at the same peak current densities. The results of this study indicate the effectiveness of a reverse current in electrodeposition for adjusting solute content and reducing processing defects.


(Received 2017/08/15; Accepted 2017/10/27; Published 2017/12/25)

Keywords: electrodeposition, nanocrystalline alloys, nickel-tungsten, pulsed current, tensile properties

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci. 51 (2006) 427-556.
  2. M. Dao, L. Lu, R. Asaro, J. Dehosson and E. Ma: Acta Mater. 55 (2007) 4041-4065.
  3. A. Pineau, A. Amine Benzerga and T. Pardoen: Acta Mater. 107 (2016) 508-544.
  4. M. Baghbanan, U. Erb and G. Palumbo: physica status solidi (a) 203 (2006) 1259-1264.
  5. C. Koch, I. Ovid'ko, S. Seal and S. Veprek: Structural nanocrystalline materials: fundamentals and applications, (Cambridge University Press, 2007).
  6. U. Erb, K. T. Aust and G. Palumbo: Nanostructured materials : processing, properties and applications, ed. by C. C. Koch, (William Andrew, Inc., Norwich, N.Y., 2007) pp. 235-292.
  7. F. Dalla Torre, H. Van Swygenhoven and M. Victoria: Acta Mater. 50 (2002) 3957-3970.
  8. A.M. El-Sherik, U. Erb, G. Palumbo and K.T. Aust: Scr. Metall. Mater. 27 (1992) 1185-1188.
  9. A. Giga, Y. Kimoto, Y. Takigawa and K. Higashi: Scr. Mater. 55 (2006) 143-146.
  10. H. Iwasaki, K. Higashi and T.G. Nieh: Scr. Mater. 50 (2004) 395-399.
  11. H. Hosokawa, H. Matsumoto, M. Hakamada and M. Mabuchi: J. Mater. Sci. 41 (2006) 8372-8376.
  12. T. Yamasaki: Scr. Mater. 44 (2001) 1497-1502.
  13. C.C. Koch, K.M. Youssef, R.O. Scattergood and K.L. Murty: Adv. Eng. Mater. 7 (2005) 787-794.
  14. H. Li and F. Ebrahimi: Acta Mater. 54 (2006) 2877-2886.
  15. H. Wei, G.D. Hibbard, G. Palumbo and U. Erb: Scr. Mater. 57 (2007) 996-999.
  16. I. Brooks, G. Palumbo, G.D. Hibbard, Z.R. Wang and U. Erb: J. Mater. Sci. 46 (2011) 7713-7724.
  17. I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Sci. Eng. A 578 (2013) 318-322.
  18. I. Matsui, T. Kawakatsu, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Lett. 116 (2014) 71-74.
  19. N.S. Qu, D. Zhu, K.C. Chan and W.N. Lei: Surf. Coat. Tech. 168 (2003) 123-128.
  20. K. Saber, C.C. Koch and P.S. Fedkiw: Mater. Sci. Eng. A 341 (2003) 174-181.
  21. M.S. Chandrasekar and M. Pushpavanam: Electrochim. Acta 53 (2008) 3313-3322.
  22. I. Matsui: Materia Japan 55 (2016) 166-170.
  23. N. Ibl: Surf. Technol. 10 (1980) 81-104.
  24. A.M. El-Sherik, U. Erb and J. Page: Surf. Coat. Tech. 88 (1997) 70-78.
  25. J. C. Puippe and F. Leaman: Theory and Practice of Pulse Plating, (American Electroplaters and Surface Finishers Society, 1986).
  26. S. Ruan and C.A. Schuh: Scr. Mater. 59 (2008) 1218-1221.
  27. I. Matsui, T. Uesugi, Y. Takigawa and K. Higashi: Acta Mater. 61 (2013) 3360-3369.
  28. H. Mori, I. Matsui, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Lett. 175 (2016) 86-88.
  29. I. Matsui, H. Mori, T. Kawakatsu, Y. Takigawa, T. Uesugi and K. Higashi: Mater. Sci. Eng. A 607 (2014) 505-510.
  30. Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh and A. Hamza: Scr. Mater. 51 (2004) 1023-1028.
  31. I. Matsui, M. Kanetake, H. Mori, Y. Takigawa and K. Higashi: Mater. Lett. 205 (2017) 211-214.
  32. I. Matsui, N. Omura, M. Li, Y. Murakami and S. Tada: J. Jpn. Inst. Met. Mater. 80 (2016) 217-223.
  33. A.M. El-sherik and U. Erb: J. Mater. Sci. 30 (1995) 5743-5749.
  34. C. Cheung, F. Djuanda, U. Erb and G. Palumbo: Nanostruct. Mater. 5 (1995) 513-523.
  35. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer and A.B.P. Vogels: J. Appl. Crystallogr. 15 (1982) 308-314.
  36. E.J. Mittemeijer and U. Welzel: Z. Kristallogr. 223 (2008) 552-560.
  37. C.C. Koch, R.O. Scattergood, M. Saber and H. Kotan: J. Mater. Res. 28 (2013) 1785-1791.
  38. K. Tanaka, Y. Koike, K. Sano, H. Tanaka, S. Machiya, T. Shobu and H. Kimachi: J. Soc. Mater. Sci. Jpn. 64 (2015) 528-535.
  39. I. Ohno: Journal of the Metal Finishing Society of Japan 39 (1988) 149-155.
  40. M. Paunovic and M. Schlesinger: Fundamentals of electrochemical deposition, (john wiley & sons, 2006).
  41. Y. Takigawa, S. Wakayama, I. Matsui, T. Uesugi and K. Higashi: Mater. Trans. 52 (2011) 37-40.
  42. M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe and R. Birringer: Acta Mater. 56 (2008) 4255-4266.
  43. T. Chookajorn, H.A. Murdoch and C.A. Schuh: Science 337 (2012) 951.
  44. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton and P. Wang: Acta Mater. 51 (2003) 387-405.


© 2017 The Japan Institute of Metals and Materials
Comments to us :