Materials Transactions Online

Materials Transactions, Vol.59 No.01 (2018) pp.117-122
© 2017 Japan Society of Powder and Powder Metallurgy

Microstructures and Mechanical Properties of Shape Memory Alloy Using Pre-Mixed TiNi Powders with TiO2 Particles

Ryoichi Soba1, Yukiko Tanabe1, Takayuki Yonezawa2, Junko Umeda2 and Katsuyoshi Kondoh2

1R&D Center, Terumo Corporation, Ashigarakami-gun, Kanagawa 259-0151, Japan
2Joining and Welding Research Institute, Osaka University, Ibaraki 567-0047, Japan

In this study, microstructural and mechanical properties of the extruded and heat-treated TiNi alloys by sintering the mixture of TiNi pre-mixed powder with titanium dioxide (TiO2) particles were investigated. Pure Ti and pure Ni powder with TiO2 particles were mixed and consolidated by spark plasma sintering (SPS). SPSed TiNi alloy compacts were extruded and heat-treated subsequently. SPSed TiNi alloy compacts had TiNi matrix and Ti4Ni2O phase. Ti4Ni2O phase was formed during SPS by reaction between TiNi matrix and oxygen atoms originated from additive TiO2 particles. Consequently, the heat-treated Ti-50.5 at%Ni alloy using pre-mixed powder with 1.0 vol% TiO2 particles showed a high plateau stress of 630 MPa and a good shape recovery of 79.7% in 8% strain applied. The heat-treated TiNi alloy with 1.0 vol% TiO2 particles revealed the high strength and good shape memory properties. The high strengthening mechanism of the TiNi alloy using pre-mixed powder with TiO2 particles was mainly due to a decrease martensitic transformation temperature by an increase solute Ni content in TiNi matrix after reaction between TiNi and TiO2.

This Paper was Originally Published in Japanese in J. Jpn. Soc. Powder Powder Metallurgy 64 (2017) 589-594.


(Received 2017/09/06; Accepted 2017/10/15; Published 2017/12/25)

Keywords: TiNi pre-mixed powder, TiO2 particles, shape memory alloy, precipitation, hysteresis

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. S. Miyazaki, T. Sakuma and T. Shibuya: Applications of Shape Memory Alloys, (CMC Publishing, 2001).
  2. D.J. Wever, A.G. Veldhuizen, J. de Vries, H.J. Busscher, D.R.A. Uges and J.R. van Horn: Biomaterials 19 (1998) 761-769.
  3. T. Duerig, A. Pelton and D. Stockel: Mater. Sci. Eng. A 273-275 (1999) 149-160.
  4. J.K. Allafi, B.A. Ahmadi and M. Zare: Mater. Sci. Eng. C 30 (2010) 1112-1117.
  5. P. Filip, J. Lausmaa, J. Musialek and K. Mazanec: Biomaterials 22 (2001) 2131-2138.
  6. N.B. Morgan: Mater. Sci. Eng. A 378 (2004) 16-23.
  7. T. Yonezawa, T. Yoshimura, J. Umeda, K. Kondoh and R. Souba: Smart Processing Society for Materials 1 (2012) 288-292.
  8. T. Koyari, K. Hatano, H. Katoh, S. Miura, M. Tokizane: Proceedings of 1991 Society of Materials Science Japan, 40 (1991) pp. 390-392.
  9. K. Otsuka and X. Ren: Prog. Mater. Sci. 50 (2005) 511-678.
  10. H. Zhao, C.Q. Liang, J.T. Liu, Y.X. Tong, F. Chen, B. Tian, L. Li and Y.F. Zheng: J. Mater. Eng. Perform. 21 (2012) 2566-2571.
  11. M. Nishida, T. Hara, T. Ohba, K. Yamaguchi, K. Tanaka and K. Yamauchi: Mater. Trans. 44 (2003) 2631-2636.
  12. K. Funami, Y. Sekiguchi and H. Funakubo: J. Jpn. Inst. Metals 48 (1984) 1113-1119.
  13. M. Bram, A.A. Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer and D. Stöver: Mater. Sci. Eng. A 337 (2002) 254-263.
  14. E.C. Yen and K.S. Hwang: Mater. Sci. Eng. A 528 (2011) 5296-5305.
  15. Y. Shugo, S. Hanada and T. Honma: Bulletin of the Research Institute of Mineral Dressing and Metallurgy 41 (1985) 23-34.
  16. Y. Liu and H. Yang: Smart Mater. Struct. 16 (2007) S22-S27.
  17. K. Otsuka and X. Ren: Prog. Mater. Sci. 50 (2005) 511-678.
  18. W. Tang: Metall. Mater. Trans., A 28 (1997) 537-544.


© 2017 Japan Society of Powder and Powder Metallurgy
Comments to us :