Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.842-844
© 2017 The Japan Institute of Metals and Materials

Properties and Morphologies of Epoxy Resin Based Composites Reinforced by Polyurethane and Graphene Oxide

Bin Chen1, Jijun Tang1, Gaitong Zhang1, Suqin Chen1 and Jing Zhang1

1College of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Graphene oxide/polyurethane/epoxy resin nanocomposites containing various contents of graphene oxide were prepared by a sequential physical and polymeric technique. For the nanocomposites with a 0.3 mass% loading of graphene oxide, great improvement in tensile properties such as the elongation at break and toughness have been achieved by 45% and 87%, respectively. Meanwhile, the damping property of the nanocomposites is superior to that of the polyurethane/epoxy composite, with a 1℃ loss for the glass transition temperature. Combined with the morphology analysis, it has been proved that the polyurethane prepolymer terminated with hydroxyl groups and graphene oxide exhibit synergistic effect on improving mechanical properties of neat epoxy resin.


(Received 2016/12/27; Accepted 2017/03/08; Published 2017/04/25)

Keywords: nanocomposites, epoxy resin, graphene oxide, mechanical and thermal properties, morphologies

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. C.H. Lin, Y.C. Chou, W.F. Shiao and M.W. Wang: Polymer 97 (2016) 300-308.
  2. X. Zhang, Q.L. He, H.B. Gu, H.A. Colorado, S.Y. Wei and Z.H. Guo: Acs Appl Mater Inter 5 (2013) 898-910.
  3. A. Gupta: Polym. Compos. 37 (2016) 141-145.
  4. M.A. El-Fattah, A.M. El Saeed, A.M. Azzam, A.R.M. Abdul-Raheim and H.H.H. Hefni: Prog. Org. Coat. 101 (2016) 288-296.
  5. Q.M. Jia, M.S. Zheng, H.X. Chen and R.J. Shen: Mater. Lett. 60 (2006) 1306-1309.
  6. Z.P. Zou, X.B. Liu, Y.P. Wu, B. Tang, M. Chen and X.L. Zhao: Rsc Adv 6 (2016) 18060-18070.
  7. J. Kim, B.S. Yim, J.M. Kim and J. Kim: Microelectron. Reliab. 52 (2012) 595-602.
  8. S.R. Lu, S.R. Li, J.H. Yu, Z.K. Yuan and B. Qi: Rsc Adv 3 (2013) 8915-8923.
  9. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff: Nature 442 (2006) 282-286.
  10. Y. Lan, H. Liu, X.H. Cao, S.G. Zhao, K. Dai, X.R. Yan, G.Q. Zheng, C.T. Liu, C.Y. Shen and Z.H. Guo: Polymer 97 (2016) 11-19.
  11. Y.T. Li, H.Q. Lian, Y.N. Hu, W. Chang, X.G. Cui and Y. Liu: Polymers (Basel) 8 (2016) 236.
  12. J. Zhang, C.Q. Zhang and S.A. Madbouly: J. Appl. Polym. Sci. 132 (2015) 41751.
  13. M. Bakar, R. Duk, M. Przybylek and M. Kostrzewa: J. Reinf. Plast. Compos. 28 (2009) 2107-2118.
  14. S.L. Xia, Y.L. Liu, F.Y. Pei, L.Q. Zhang, Q.J. Gao, W.J. Zou, J. Peng and S.K. Cao: Polymer 64 (2015) 62-68.
  15. X.S. Lv, Z.X. Huang, C. Huang, M.X. Shi, G.B. Gao and Q.Q. Gao: Compos., Part B Eng. 88 (2016) 139-149.


© 2017 The Japan Institute of Metals and Materials
Comments to us :