Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.817-824
© 2017 The Japan Institute of Metals and Materials

Morphology Evolution of γ′ Precipitates during Isothermal Exposure in Wrought Ni-Based Superalloy Inconel X-750

Hiromu Hisazawa1, Yoshihiro Terada2 and Masao Takeyama3

1Department of Materials Science and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
2Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502, Japan
3Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan

The morphological evolution of γ′ precipitates and lattice misfit with isothermal aging were closely investigated in wrought Ni-based superalloy Inconel X-750. The γ′ morphology dramatically changes in terms of shape, distribution, coalescence and coherency at the γ/γ′ interface. These processes and their dependence on temperature are summarized as a γ′ morphology map together with a time-temperature-precipitation (TTP) diagram through quantifying relevant morphological parameters. The lattice misfit was measured by X-ray diffraction and is positive; it decreases from 0.6% at room temperature to 0.1% at the aging temperature. These results suggest that the morphological changes of the γ′ precipitates are attributable to very low lattice misfit, the interaction of the elastic field, the volume fraction of the precipitates and incoherence in γ/γ′ interface.

[doi:10.2320/matertrans.M2016376]

(Received 2016/10/25; Accepted 2017/01/19; Published 2017/04/25)

Keywords: nickel-based alloy, gamma prime, morphology, lattice misfit

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. T.M. Pollock and S. Tin: J. Prop. Pow. 22 (2006) 361-374.
  2. F. Sun, Y.F. Gu, J.B. Yan, Y.X. Xu, Z.H. Zhong and M. Yuyama: J. Alloy. Compd. 687 (2016) 389-401.
  3. R. Viswanathan, J. Shingledecher and J. Hawk: ECCC (2009) 31-42.
  4. X.Z. Qin, J.T. Guo, C. Yuan, J.S. Hou, L.Z. Zhou and H.Q. Ye: Mater. Sci. Eng. A 543 (2012) 121-128.
  5. J. Zrnik, P. Strunz, V. Vrchovinsky, O. Muransky, Z. Novy and A. Wiedenmann: Mater. Sci. Eng. A 387-389 (2004) 728-733.
  6. D.A. Grose and G.S. Ansell: Metall. Trans. A 12 (1981) 1631-1645.
  7. R.A. MacKay and M.V. Nathal: Acta Metall. Mater. 38 (1990) 993-1005.
  8. T. Sugui, W. Minggang, Y. Huichen, Y. Xingfu, L. Tang and Q. Benjiang: Mater. Sci. Eng. A 527 (2010) 4458-4465.
  9. M. Fährmann, P. Fratzl, O. Paris, E. Fährmann and W.C. Johnson: Acta Metall. Mater. 43 (1995) 1007-1022.
  10. R.A. Ricks, A.J. Porter and R.C. Ecob: Acta Metall. 31 (1983) 43-53.
  11. S. Onaka, N. Kobayashi, T. Fujii and M. Kato: Mater. Sci. Eng. A 347 (2003) 42-49.
  12. M.E. Thompson, C.S. Su and P.W. Voorhees: Acta Metall. Mater. 42 (1994) 2107-2122.
  13. X. Zhao, S.P.A. Bordas and J. Qu: J. Mech. Phys. Solids 81 (2015) 1-21.
  14. P.W. Voorhees, G.B. Mcfadden and W.C. Johnson: Acta Metall. Mater. 40 (1992) 2979-2992.
  15. A.G. Khachaturyan, S.V. Semenovskaya and J.W. Morris Jr.: Acta Mater. 36 (1988) 1563-1572.
  16. S.V. Prikhodko and A.J. Ardell: Acta Mater. 51 (2003) 5021-5036.
  17. A. Maheshwari and A. Ardell: Scr. Mater. 26 (1992) 347-352.
  18. A.C. Lund and P.W. Voorhees: Acta Mater. 50 (2002) 2585-2598.
  19. X. Zhao, R. Duddu, S.P.A. Bordas and J. Qu: J. Mech. Phys. Solids 61 (2013) 1433-1445.
  20. C.H. Su and P.W. Voorhees: Acta Mater. 44 (1996) 1987-1999.
  21. C.L. Qiu and P. Andrews: Mater. Charact. 76 (2013) 28-34.
  22. A.K. Sinha and J.J. Moore: Metallography 19 (1986) 75-86.
  23. P.K. Venkiteswaran, M.W.A. Bright and D.M.R. Taplin: Mater. Sci. Eng. 11 (1973) 255-268.
  24. G.R.X. de Souza, S.B. Gabriel, J. Dille, D.S. dos Santos and L.H. de Almeida: Mater. Sci. Eng. A 564 (2013) 102-106.
  25. J.A. del Valle, A.C. Picasso, I. Alvarez and R. Romero: Scr. Mater. 41 (1999) 237-243.
  26. T. Kekkonen and H. Hänninen: Corros. Sci. 25 (1985) 789-803.
  27. A.K. Sinha and J.J. Moore: Metallography 19 (1986) 87-98.
  28. J.P. MacSleyne, J.P. Simmons and M. De Graef: Acta Mater. 56 (2008) 427-437.
  29. J.S. Van Sluytman and T.M. Pollock: Acta Mater. 60 (2012) 1771-1783.
  30. L. Nguyen, R. Shi, Y. Wang and M. De Graef: Acta Mater. 103 (2016) 322-333.
  31. X.P. Tan, J.L. Liu, X.P. Song, T. Jin, X.F. Sun and Z.Q. Hu: J. Mater. Sci. Technol. 27 (2011) 899-905.
  32. D.F. Lahrman, R.D. Field, R. Darolia and H.L. Fraser: Acta Metall. 36 (1988) 1309-1320.
  33. R.S. Moshtaghin and S. Asgari: Mater. Des. 24 (2003) 325-330.
  34. C. Shen, J.P. Simmons and Y. Wang: Acta Mater. 54 (2006) 5617-5630.
  35. R.A. MacKay, T.P. Gabb, A. Garg, R.B. Rogers and M.V. Nathal: Mater. Charact. 70 (2012) 83-100.
  36. H. Long, H. Wei, Y. Liu, S. Mao, J. Zhang, S. Xiang, Y. Chen, W. Gui, Q. Li, Z. Zhang and X. Han: Acta Mater. 120 (2016) 95-107.
  37. Y. Chen, R. Prasath babu, T.J.A. Slater, M. Bai, R. Mitchell, O. Ciuca, M. Preuss and S.J. Haigh: Acta Mater. 110 (2016) 295-305.
  38. M. Cottura, Y.L. Bouar, B. Appolaire and A. Finel: Acta Mater. 94 (2015) 15-25.
  39. M. Kato, T. Fujii and S. Onaka: Mater. Trans., JIM 37 (1996) 314-318.
  40. A.J. Ardell: Philos. Mag. 94 (2014) 2101-2130.
  41. M.V. Nathal, R.A. Mackey and R.G. Garlick: Mater. Sci. Eng. 75 (1985) 195-205.
  42. M. Fährmann, J.G. Wolf and T.M. Pollock: Mater. Sci. Eng. A 210 (1996) 8-15.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp