Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.806-812
© 2017 The Japan Institute of Metals and Materials

Deposition of DLC Films onto Oxynitriding-Treated V4E High Vanadium Tool Steel through DC-Pulsed PECVD Process

Shih-Hsien Chang1, Wei-Chen Wu1, Kuo-Tsung Huang2 and Chung-Ming Liu3

1Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R. O. China
2Department of Auto-Mechanics, National Kangshan Agricultural Industrial Senior High School, Kaohsiung 82049, Taiwan, R. O. China
3Department of Chemical and Material Engineering, Lunghwa University of Science and Technology, Taoyuan County 33306, Taiwan, R. O. China

In this work, DLC films are prepared by DC-pulsed PECVD after the oxynitriding treatment of V4E high vanadium tool steel. The experimental design includes various power densities (200, 400, 600 and 800 mW·cm−2) with an unbalanced bipolar-pulsed voltage. The deposition time is 90 min, and the CH4 gas flow is maintained at 5 sccm, respectively. The experimental results show the duplex coating layers to have better properties when the DLC films are treated by an appropriate power density (400 mW·cm−2). These films also possess the lowest wear loss volume (for loads of 2 N and 5 N of 6.23 × 10−3 mm3 and 1.19 × 10−2 mm3, respectively), the lowest corrosion current (4.09 × 10−4 A·cm−2) and the highest polarization resistance (258.83 Ω·cm2) after the 3.5 mass% NaCl corrosion test. This study confirms that the wear and corrosion resistance of V4E tool steel can be effectively improved through the DLC/oxynitriding duplex treatment.


(Received 2016/10/24; Accepted 2017/02/20; Published 2017/04/25)

Keywords: DLC, DC-pulsed PECVD, oxynitriding treatment, V4E steel, wear, corrosion

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. Domański and A. Bokota: Int. J. Mech. Sci. 96-97 (2015) 47-57.
  2. H.G. Nanesa and M. Jahazi: Mater. Sci. Eng. A 634 (2015) 32-36.
  3. “VANADIS 4 EXTRA SuperClean”. ASSAB Steel Website., (accessed 2016-07-26)
  4. “Uddeholm Vanadis® 4 Extra SuperClean”. Uddeholm Steel Website., (accessed 2016-07-26)
  5. H. Liu, J.C. Li, Y.T. Chai, W. Wei and J. Hu: Vac. 121 (2015) 18-21.
  6. A. Alsaran, H. Altun, M. Karakan and A. Çelik: Surf. Coat. Technol. 176 (2004)344-348.
  7. S. Kikuchi, T. Fukuoka, T. Sasaki, J. Komotori, K. Fukazawa, Y. Misaka and K. Kawasaki: Mater. Trans. 54 (2013) 344-349.
  8. S.H. Chang, T.P. Tang, Y.C. Chen and J.K. Chen: ISIJ Int. 49 (2009) 421-424.
  9. E.L. Dalibon, V. Trava-Airoldi, L.A. Pereira, A. Cabo and S.P. Brühl: Surf. Coat. Tech. 255 (2014) 22-27.
  10. S.H. Chang, C.C. Yu, K.T. Huang and C.M. Liu: ISIJ Int. 55 (2015) 2631-2638.
  11. F. Cemin, C.D. Boeira and C.A. Figueroa: Tribol. Int. 94 (2016) 464-469.
  12. Z.Y. Xu, H. Sun, Y.X. Leng, X.Y. Li, W.M. Yang and N. Huang: Appl. Surf. Sci. 328 (2015) 319-324.
  13. S.H. Chang, Y.K. Lin and K.T. Huang: Surf. Coat. Tech. 207 (2012) 571-578.
  14. M. Ebrahimi, F. Mahboubi and M.R. Naimi-Jamal: Diamond Related Materials 52 (2015) 32-37.
  15. G. Capote, E.J. Corat and V.J. Trava-Airoldi: Surf. Coat. Tech. 260 (2014) 133-138.
  16. T. Morita, K. Andatsu, S. Hirota, T. Kumakiri, M. Ikenaga and C. Kagaya: Mater. Trans. 54 (2013) 732-737.
  17. N. Vidakis, A. Antoniadis and N. Bilalis: J. Mater. Process. Technol. 143-144 (2003) 481-485.
  18. M. Umeno, M. Noda, H. Uchida and H. Takeuchi: Diamond Related Materials 17 (2008) 684-687.
  19. P.C.S. Silva, M.A.R. Ramos, E.J. Corat and V.J.T. Airoldi: Mater. Res. 19 (2016) 882-888.
  20. A.C. Ferrari and J. Robertson: Phys. Rev. B 61 (2000) 14095-14107.
  21. J. Robertson: Surf. Coat. Tech. 50 (1992) 185-203.
  22. M.J. Paterson, K.G. Orrman-Rossiter, D.K. Sood and S.K. Bhargava: Diamond Related Materials 2 (1993) 1439-1444.
  23. J.H. Wang, S. Zhang, H.L. Wang, K.E. Wong, Q.A. Zhou and Y.Z. Zhou: Thin Films. 517 (2009) 5202-5206.


© 2017 The Japan Institute of Metals and Materials
Comments to us :