Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.795-798
© 2017 The Japan Institute of Metals and Materials

Electrocapillary Deformation and Electric Voltage Induced Flow of Liquid Wood Alloy in NaOH Aqueous Solution

Qiaoli Lin1 and Guodi Zhang1

1State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, No.287 Langongping Road, Lanzhou 730050, People's Republic of China

Electrocapillary behaviors for liquid Wood alloy in NaOH aqueous solution by applying external low voltage were investigated. The electrode reaction (redox reaction) induced the formation or removing of oxide film, and further caused the drop deformation by decreasing or increasing of interfacial tension. The same polar charge in the electric double layer would also decrease the interfacial tension. In order to maintain the stability of the system, the contact area of the interface would be expanded, and induced drop deformation macroscopically. When the liquid metal was charged by the chemical reaction in the solution, the electric field force is an effective way to drive it.


(Received 2016/12/06; Accepted 2017/02/28; Published 2017/04/25)

Keywords: metals, novel techniques, sensors

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. M.R. Khan, G.J. Hayes, J.H. So, G. Lazzi and M.D. Dickey: Appl. Phys. Lett. 99 (2011) 013501.
  2. J.H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi and M.D. Dickey: Adv. Funct. Mater. 19 (2009) 3632.
  3. G. Mumcu, A. Dey and T. Palomo: IEEE Microwave Compon. Lett. 23 (2013) 187.
  4. J.L. Jackel, S. Hackwood, J.J. Veselka and G. Beni: Appl. Opt. 22 (1983) 1765.
  5. T. Krupenkin and J.A. Taylor: Nat. Commun. 2 (2011) 448.
  6. L. Chen and E. Bonaccurso: Adv. Colloid Interface Sci. 210 (2014) 2.
  7. J. Lee and C.J. Kim: J. Mem. S. 9 (2000) 171.
  8. G. Lippmann: Ann. Chim. Phys. 5 (1875) 494.
  9. Y. Zhong, Q. Guo, S. Li, J. Shi and L. Liu: Carbon 48 (2010) 1689.
  10. T.B. Massalski, Binary Phase Diagram (CD-ROM), ASM International, 1996.
  11. A. Cardona, S. Saalfeld, P. Tomančák, V. Hartenstein, Drosophila brain development: closing the gap between a macroarchitectural and a microarchitectural approach, Cold Spring Harb Symp Quant Biol, 2009.
  12. L. Wang and J. Liu: Proc. R. Soc. Lond. A 471 (2015) 2178.
  13. R.C. Gough, A.M. Morishita, J.H. Dang, M.R. Moorefield, W.A. Shiroma and A.T. Ohta: Micro & Nano Lett. 3 (2015).
  14. S.Y. Tang, V. Sivan, K. Khoshmanesh, A.P. O'Mullane, X. Tang, B. Gol, N. Eshtiaghi, F. Lieder, P. Petersen, A. Mitchell and K. Kalantar-zadeh: Nanoscale 5 (2013) 5949.
  15. L. Sheng, J. Zhang and J. Liu: Adv. Mater. 26 (2014) 6036.
  16. R.C. Gough, A.M. Morishita, J.H. Dang, W. Hu, W.A. Shiroma and A.T. Ohta: IEEE Access 2 (2014) 874.
  17. S.Y. Tang, K. Khoshmanesh, V. Sivan, P. Petersen, A.P. O' Mullane, D. Abbotte, A. Mitchell and K.K. Zadeh: Proc. Natl. Acad. Sci. USA 111 (2014) 3304.
  18. B. Yuan, S. Tan, Y. Zhou and J. Liu: Sci. Bull. 60 (2015) 1203.
  19. Q. Lin, P. Shen, L. Yang, S. Jin and Q. Jiang: Acta Mater. 59 (2011) 1898.
  20. Q. Lin, P. Jin, R. Cao and J. Chen: Surf. Coat. Tech. 302 (2016) 166.
  21. D. Avnir: J. Chem. Educ. 66 (1989) 211.


© 2017 The Japan Institute of Metals and Materials
Comments to us :