Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.790-794
© 2017 The Japan Institute of Metals and Materials

Effect of Sodium Carbonate on Phase Transformation of High-Magnesium Laterite Ore

Shiwei Zhou1, 2, Jingcheng Dong1, 2, Chao Lu1, 2, Bo Li1, 2, Fan Li2, Bing Zhang2, Hua Wang1, 2 and Yonggang Wei1, 2

1State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
2Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

The phase transformation of high-magnesium laterite ore were investigated during the reduction roasting process. In the absence of sodium carbonate [Na2CO3], the X-ray diffraction results indicate that the [Fe Ni] alloy existed in ore in the form of taenite. The taenite particles is fine and the size is approximately 30-40 nm, which indicate that the nickel and iron are not migrated and aggregated during the non-smelting reduction roasting process. In the presence of sodium carbonate, the intensity of [Fe Ni] alloy phase increases; the taenite diffraction peaks disappears, corresponding to the appearance of kamacite. The results of SEM images show that the [Fe Ni] alloy particle size has a significant increase with the addition of Na2CO3. Based on the theoretical analysis, the pivotal role of Na2CO3 may be mainly attributed to the Na+, which could infiltrate into the crystal lattice of FeO, leading to the lattice distortion. Furthermore, the sodium carbonate would be decomposed at high temperature, and the generated CO2 could promote the Boudouard reaction which produced the CO to enhance the reduction of metallic oxides within ore.


(Received 2016/12/13; Accepted 2017/02/13; Published 2017/04/25)

Keywords: laterite ore, phase transformation, reduction roasting, sodium carbonate

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. A.D. Dalvi, W.G. Bacon and R.C. Osborne: Inco Limited, Ontario, Canada, 2004.
  2. R. Fan and A.R. Gerson: Geochim. Cosmochim. Acta 75 (2011) 6400-6415.
  3. D. Georgiou and V.G. Papangelakis: Hydrometallurgy 49 (1998) 23-46.
  4. C.A. Pickles, J. Forster and R. Elliott: Miner. Eng. 65 (2014) 33-40.
  5. M.A. Rhamdhani, P.C. Hayes and E. Jak: Trans. Inst. Min. Metall. C 118 (2009) 146-155.
  6. M. Valix and W.H. Cheung: Miner. Eng. 15 (2002) 607-612.
  7. W.R. Liu, X.H. Li, Q.Y. Hu, Z.X. Wang, K.Z. Gu, J.H. Li and L.X. Zhang: Trans. Nonferrous Met. Soc. China 20 (2010) s82-s86.
  8. J. Lu, S.J. Liu, S.G. Ju, W.G. Du, F. Pan and S. Yang: Miner. Eng. 49 (2013) 154-164.
  9. B. Li, H. Wang and Y.G. Wei: Miner. Eng. 24 (2011) 1556-1562.
  10. C.T. Harris, J.G. Peacey and C.A. Pickles: Miner. Eng. 54 (2013) 21-31.
  11. D. Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan and G. L. Zheng: Int. J. Miner. Process 106-109 (2012) 1-7.
  12. M. Jiang, T. Sun, Z. Liu, J. Kou, N. Liu and S. Zhang: Int. J. Miner. Process. 123 (2013) 32-38.
  13. D.Q. Zhu, G.L. Zheng, J. Pan, Q.H. Li, Y.M. An, J.H. Zhu and Z.H. Liu: J. Cent. South. Univ. 44 (2013) 1-7.
  14. Y. Shirane, K. Morinaga and T. Yanagase: Int. J. Miner. Process. 19 (1987) 253-261.
  15. Y. Shirane, S. Nabika, S. Sakamoto and I. Nakashima: Int. J. Miner. Process. 19 (1987) 237-251.
  16. J.Q. Park, H.S. Kim and S.M. Jung: Miner. Eng. 71 (2015) 205-215.
  17. R. Haque and H.S. Ray: Metall. Mater. Trans., B 26 (1995) 400-401.
  18. M. Bahgat, M.K. Paek and J.J. Pak: Mater. Trans. 48 (2007) 3132-3139.
  19. X.M. Guo, H.F. Tang, Y. Zang, J.B. Li and S.B. Zhang: J. Chin. Rare. Earth. Soc. 20 (2002) 440-442.


© 2017 The Japan Institute of Metals and Materials
Comments to us :