Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.782-789
© 2017 The Japan Institute of Metals and Materials

The Application of Etched Aluminum Wires as Catalyst Supports for Methanol Steam-Reforming

Hiromi Hiramatsu1, 2, Makoto Sakurai1 and Hideo Kameyama1

1Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
2Department of Development, Japan Capacitor Industrial Co., Ltd., Tokyo 197-0013, Japan

In the present work, we investigated the alternating current (AC) etching of aluminum wires with the aim of fabricating catalyst supports. This support material was found to possess a spongy surface layer that could be subsequently filled with γ-alumina by a combination of hydration and calcination. These support wires are easily fabricated at low cost, and could be mass produced continuously. The integrated structure of the catalyst produces a strong interconnection between the wire substrate and a thick catalyst layer on the wire. This work also demonstrated that the diffusion inside the catalyst layer can be controlled by varying the etched structure of the support layer. A micro-structured catalytic wall reactor concept was developed using these wires, situated parallel to one another within a tubular device, such that microchannels were present between the wires. The steam-reforming of methanol was assessed in this type of microreactor.


(Received 2016/12/20; Accepted 2017/02/06; Published 2017/04/25)

Keywords: microreactor, aluminum wire, etching, catalyst support, internal diffusion, methanol steam-reforming

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. C.K. Dyer and R.S. Alwitt: J. Electrochem. Soc. 128 (1981) 300-305.
  2. H.J. de Wit and H.M.J. Boots: J. Appl. Phys. 54 (1983) 2727-2731.
  3. C.G. Dunn, R.B. Bolon, A.S. Alwan and A.W. Stirling: J. Electrochem. Soc. 118 (1971) 381-390.
  4. R.S. Alwitt, H. Uchi, T.R. Beck and R.C. Alkire: J. Electrochem. Soc. 131 (1984) 13-17.
  5. K. Arai, T. Suzuki and T. Atsumi: J. Electrochem. Soc. 132 (1985) 1667-1671.
  6. H. Hiramatsu, M. Sakurai and H. Kameyama: Int. J. Hydrogen Energ. 41 (2016) 10161-10169.
  7. A.I. Stankiewicz and J.A. Moulijn: Chem. Eng. Prog. 96 (2000) 22-34.
  8. P.L. Mills, D.J. Quiram and J.F. Ryley: Chem. Eng. Sci. 62 (2007) 6992-7010.
  9. W. Ehrfeld, V. Hessel and H. Lowe: Wiley, New York, April (2000)
  10. G. Kolb: Chem. Eng. Process. Process Intensif. 65 (2013) 1-44.
  11. V. Meille: Appl. Catal. A Gen. 315 (2006) 1-17.
  12. I.E. Sungkono, H. Kameyama and T. Koya: Appl. Surf. Sci. 121-122 (1997) 425-428.
  13. T. Take, T. Yachi, M. Tomura, C. Kiyohara, T. Ishino and H. Kameyama: J. Chem. Eng. of Jpn 36 (2003) 271-276.
  14. Y. Guo, L. Wang, M. Sakurai, H. Kameyama and Y. Kudoh: J. Chem. Eng. of Jpn 39 (2006) 162-172.
  15. Y. Guo, L. Wang, M. Sakurai and H. Kameyama: J. Chem. Eng. of Jpn 40 (2007) 108-122.
  16. S.K. Kamarudin, W.R.W. Daud, A.Md. Som, M.S. Takriff and A.W. Mohammad: J. Power Sources. 157 (2006) 641-649.
  17. S.T. Yong, C.W. Ooi, S.P. Chai and X.S. Wu: Int. J. Hydrogen Energ. 38 (2013) 9541-9552.
  18. L. Alejo, R. Lago, M.A. Peña and J.L.G. Fierro: Appl. Catal. A: Gen. 162 (1997) 281-297.
  19. M. Sakurai and H. Hiramatsu: Japan Patent (2016) 5880909.
  20. M. Sakurai, N. Kanaya and H. Hiramatsu: Japan Patent (2016)5888718.
  21. W.J. Bernard and J.J. Randall Jr.: J. Electrochem. Soc. 107 (1960) 483-487.


© 2017 The Japan Institute of Metals and Materials
Comments to us :