Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.776-781
© 2017 The Japan Institute of Metals and Materials

Hydrogenation of Propyne Verifying the Harmony in Surface and Bulk Compositions for Fe-Ni Alloy Nanoparticles

Takayuki Kojima1, 2, Shun Fujieda2, Genichiro Kato2, Satoshi Kameoka2, Shigeru Suzuki2 and An-Pang Tsai2

1Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

We investigated the catalytic properties of Fe1−xNix nanoparticles prepared by a polyol-based method that allowed the precise control of their composition and structure. In the hydrogenation of propyne, the reaction rate decreased with decreasing x, which was in good agreement with the scenario that inactive Fe atoms dilute active Ni ensembles in particles at 0.55 ≤ x ≤ 1. For particles with x ≤ 0.46, it was suggested that slightly active Fe-Ni ensembles mainly contributed to the activity due to small population of active Ni ensembles. Since the change in catalytic properties with x was well explained by the assumption that the surface composition corresponded to x, it was concluded that the surface composition dominating the catalytic properties can be tuned by adjusting the entire composition of nanoparticles.


(Received 2016/11/17; Accepted 2017/02/06; Published 2017/04/25)

Keywords: nanoparticle, surface composition, catalysis, iron-nickel

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. M. Shelef and R.W. McCabe: Catal. Today 62 (2000) 35-50.
  2. H.S. Gandhi, G.W. Graham and R.W. McCabe: J. Catal. 216 (2003) 433-442.
  3. A. Borodziński and G.C. Bond: Catal. Rev. 48 (2006) 91-144.
  4. B. Bridier, N. López and J. Pérez-Ramírez: Dalton Trans. 39 (2010) 8412-8419.
  5. A.P. Tsai, S. Kameoka and Y. Ishii: J. Phys. Soc. Jpn. 73 (2004) 3270-3273.
  6. A.-P. Tsai, T. Kimura, Y. Suzuki, S. Kameoka, M. Shimoda and Y. Ishii: J. Chem. Phys. 138 (2013) 144701-1-9.
  7. T. Komatsu and S. Furukawa: Mater. Trans. 56 (2015) 460-467.
  8. S. Furukawa and T. Komatsu: ACS Catal. 6 (2016) 2121-2125.
  9. J. Greeley and M. Mavrikakis: Nat. Mater. 3 (2004) 810-815.
  10. B. Bridier and J. Pérez-Ramírez: J. Am. Chem. Soc. 132 (2010) 4321-4327.
  11. M. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G. Wowsnick, M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen, F. Girgsdies, D. Rosenthal, R. Schlögl and Y. Grin: Nat. Mater. 11 (2012) 690-693.
  12. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff and J.K. Nørskov: Nat. Chem. 6 (2014) 320-324.
  13. S. Fujieda, W. Miyamura, K. Shinoda, S. Suzuki and B. Jeyadevan: Mater. Trans. 57 (2016) 1645-1651.
  14. Y. Sun and Y. Xia: Science 298 (2002) 2176-2179.
  15. M. Chen, J. Kim, J.P. Liu, H. Fan and S. Sun: J. Am. Chem. Soc. 128 (2006) 7132-7133.
  16. K. Watanabe, M. Hashiba and T. Yamashina: Surf. Sci. 61 (1976) 483-490.
  17. N. Toshima and T. Yonezawa: New J. Chem. 22 (1998) 1179-1201.
  18. L. Vitos, A.V. Ruban, H.L. Skriver and J. Kollár: Surf. Sci. 411 (1998) 186-202.
  19. R.S. Mann and K.C. Khulbe: Can. J. Chem. 45 (1967) 2755-2760.
  20. N. Yoshida: PhD Thesis, Osaka University, Japan (1973).
  21. The small sample amount causes errors of the sample weight, the surface area, and the contact time affected by the surface roughness of the catalyst bed, which multiplicatively affect the estimation of reaction rate.
  22. Q. Jin, Y. He, M. Miao, C. Guan, Y. Du, J. Feng and D. Li: Appl. Catal. A Gen. 500 (2015) 3-11.
  23. S.A. Nikolaev, D.A. Pichugina and D.F. Mukhamedzyanova: Gold Bull. 45 (2012) 221-231.
  24. C.H. Bamford and C.F.H. Tipper: Comprehensive Chemical Kinetics, Vol. 20, (Elsevier, 1978) pp. 1-121.
  25. C.A. Hamilton, S.D. Jackson, G.J. Kelly, R. Spence and D. de Bruin: Appl. Catal. A Gen. 237 (2002) 201-209.
  26. J.J. Burton and E. Hyman: J. Catal. 37 (1975) 114-119.
  27. J.J. Burton, C.R. Helms and R.S. Polizzotti: J. Chem. Phys. 65 (1976) 1089-1100.
  28. A. Valcárcel, A. Clotet, F. Illasb and J.M. Ricart: Phys. Chem. Chem. Phys. 9 (2007) 311-317.
  29. T. Mitsui, M.K. Rose, E. Fomin, D.F. Ogletree and M. Salmeron: Nature 422 (2003) 705-707.
  30. A. Groß and A. Dianat: Phys. Rev. Lett. 98 (2007) 206107-1-4.
  31. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak: Binary Alloy Phase Diagrams, 2nd Ed., Vol. 2, (ASM International, 1990) pp.1735-1738.
  32. A Ni powder with smaller particle size showed a higher reaction rate per surface area than that with larger particle size. This behavior is called structure sensitive; J.M. Thomas and W.J. Thomas: Principles and Practice of Heterogeneous Catalysis, 2nd Ed., (Wiley-VCH, 2014) p. 41.
  33. D.P. Stevenson: J. Chem. Phys. 23 (1955) 203.
  34. T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen and J. Sehested: J. Catal. 224 (2004) 206-217.
  35. J.K. Nørskov, F. Abild-Pedersen, F. Studt and T. Bligaard: Proc. Natl. Acad. Sci. USA 108 (2011) 937-943.
  36. M. Feyzi, A.A. Mirzaei and H.R. Bozorgzadeh: J. Nat. Gas Chem. 19 (2010) 341-353.
  37. T. Li, H. Wang, Y. Yang, H. Xiang and Y. Li: Fuel Process. Technol. 118 (2014) 117-124.


© 2017 The Japan Institute of Metals and Materials
Comments to us :