Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.761-767
© 2017 The Mining and Materials Processing Institute of Japan

Electrolysis Oxidation of Chalcopyrite and Molybdenite for Selective Flotation

Hajime Miki1, Hidekazu Matsuoka1, Tsuyoshi Hirajima1, Gde Pandhe Wisnu Suyantara1 and Keiko Sasaki1

1Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan

Electrolysis oxidation of chalcopyrite and molybdenite was investigated, via various electrochemical methods, with the aim of realizing selective flotation of these minerals. Result of potential polarization indicated that oxidation via electrolysis affected only the chalcopyrite surface, owing mainly to the difference in conductivity of these minerals. Also measurements of contact angle after electrolysis indicated that contact angle of chalcopyrite selectively decreased whereas that of molybdenite did not decrease drastically. XPS analyses after electrolysis indicated that chalcopyrite peak decreased whereas iron oxyhydroxide (goethite) and iron sulfate increased, it suggests that these oxidation products covered on the surface of chalcopyrite. On the other hand, molybdenite peak is similar after electrolysis except for molybdenum oxide/oxygen with molybdenite can be seen for oxygen peak. From these results and general knowledge that sulfide hydrophobicity and sulfate/oxyhydroxide hydrophilicity, it can be explained that with electrolysis oxidation, hydrophilic oxihydroxide and sulfate covered on the surface of hydrophobic chalcopyrite then chalcopyrite surface became hydrophilic. On the other hand, molybdenite surface keep hydrophobic since its difficulty of oxidation and it is difficult to stay molybdenum oxide on the surface due to its soluble property. These results revealed that chalcopyrite was selectively oxidized and, hence, selective flotation of chalcopyrite and molybdenite was possible. This electrolysis oxidation methods were compared with those governing other oxidation treatments.


(Received 2016/07/12; Accepted 2017/01/23; Published 2017/04/25)

Keywords: selective flotation, electrolysis, oxidation, chalcopyrite, molybdenite, XPS

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. B.A. Wills: Wills' mineral processing technology, (Elsevier, Amsterdam, 2006).
  2. S.M. Bulatovic: Handbook of Flotation Reagents: Chemistry, Theory and Practice, (Elsevier, Amsterdam, 2010).
  3. A. Ansari and M. Pawlik: Miner. Eng. 20 (2007) 609-616.
  4. G.Y. Liu, Y.P. Lu, H. Zhong, Z.F. Cao and Z.H. Xu: Miner. Eng. 36-38 (2012) 37-44.
  5. M. Zanin, I. Ametov, S. Grano, L. Zhou and W. Skinner: Int. J. Miner. Process. 93 (2009) 256-266.
  6. A. Ansari and M. Pawlik: Miner. Eng. 20 (2007) 600-608.
  7. S. Chander: Int. J. Miner. Process. 72 (2003) 141-150.
  8. T. Hirajima, M. Mori, O. Ichikawa, K. Sasaki, H. Miki, M. Farahat and M. Sawada: Miner. Eng. 66-68 (2014) 102-111.
  9. T. Hirajima, H. Matsuoka, H. Miki, A.M. Elmahdy and K. Sasaki: Flotation'15, ed. by B. Wills, (MEI, 2015).
  10. D.A. Shirley: Phys. Rev. B 5 (1972) 4709-4714.
  11. H. Tributsch and J.C. Bennett: J. Electroanal. Chem. 81 (1977) 97-111.
  12. R.P. Hackl, D.B. Dreisinger, E. Peters and J.A. King: Hydrometallurgy 39 (1995) 25-48.
  13. T.C. Almeida, E.M. Garcia, H.W.A. Silva, T. Matencio and V.F.C. Lins: Int. J. Miner. Process. 149 (2016) 25-33.
  14. S. Chander and D.W. Fuerstenau: Int. J. Miner. Process. 10 (1983) 89-94.
  15. Z. Shuxian, W.K. Hall, G. Ertl and H. Knözinger: J. Catal. 100 (1986) 167-175.
  16. A. Ghahremaninezhad, D.G. Dixon and E. Asselin: Electrochim. Acta 87 (2013) 97-112.
  17. F.M. Capece, V. Di Castro, C. Furlani and G. Mattogno: J. Electron Spectrosc. Relat. Phenom. 27 (1982) 119-128.
  18. M.C. Biesinger, L.W.M. Lau, A.R. Gerson and R.S.C. Smart: Appl. Surf. Sci. 257 (2010) 887-898.
  19. A.N. Buckley and R. Woods: Aust. J. Chem. 37 (1984) 2403-2413.
  20. D. Brion: Appl. Surf. Sci. 5 (1980) 133-152.
  21. B.J. Tan, K.J. Klabunde and P.M.A. Sherwood: Chem. Mater. 2 (1990) 186-191.
  22. N.S. McIntyre and D.G. Zetaruk: Anal. Chem. 49 (1977) 1521-1529.
  23. M.A. Fazal, A.S.M.A. Haseeb and H.H. Masjuki: Corros. Sci. 67 (2013) 50-59.
  24. K. Sasaki, K. Takatsugi, K. Ishikura and T. Hirajima: Hydrometallurgy 100 (2010) 144-151.
  25. S.L. Harmer, J.E. Thomas, D. Fornasiero and A.R. Gerson: Geochim. Cosmochim. Acta 70 (2006) 4392-4402.
  26. R.V. Siriwardane and J.M. Cook: J. Colloid Interface Sci. 104 (1985) 250-257.
  27. M.A. Baker, R. Gilmore, C. Lenardi and W. Gissler: Appl. Surf. Sci. 150 (1999) 255-262.
  28. P. Gajardo, P. Grange and B. Delmon: J. Phys. Chem. 83 (1979) 1771-1779.
  29. J. Iranmahboob, S.D. Gardner, H. Toghiani and D.O. Hill: J. Colloid Interface Sci. 270 (2004) 123-126.


© 2017 The Mining and Materials Processing Institute of Japan
Comments to us :