Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.757-760
© 2017 The Japan Institute of Metals and Materials

Effect of Shot Peening on Mechanical Behavior of Zr-Based Bulk Metallic Glasses under Monotonic and Cyclic Loading Mode

Ran Wei1, Liangbin Chen2, Juan Tao1, Shuai Guo1, Zhenhua Han3 and Fushan Li1

1School of Materials Science and Engineering, zhengzhou University, zhengzhou 450001, China
2State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710068, China

The mechanical behavior of as-cast and peened (Zr55Cu30Ni5Al10)99Y1 bulk metallic glass (BMG) under monotonic loading and cyclic loading mode was investigated. Abundant pre-existing shear bands were observed on the surface of the BMG after shot peening. It is suggested that shot peening can significantly enhance the compressive plasticity of the BMG. Interestingly, compared with the as-cast specimen, the peened specimen exhibits the similar yield stress of about 1850 MPa and fatigue limit of about 1095 MPa in stress range, but shorter fatigue life at high stress level. That is to say, shot peening has a great influence on the fatigue properties of BMG in high stress range, and has little influence on the fatigue properties of BMG in low stress range near fatigue limit. This is attributed to mutually competition between the positive effect and negative effect on the mechanical behaviors of BMG induced by shot peening, and which one of the two effects plays the dominant role depends mainly on the loading mode. The present study will give suggestion for the safe service of Zr-based BMG.


(Received 2016/10/03; Accepted 2017/02/27; Published 2017/04/25)

Keywords: bulk metallic glasses, fatigue, deformation and fracture, shot peening

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. L. Wang, H. Bei, Y.F. Gao, Z.P. Lu and T.G. Nieh: Acta Mater. 59 (2011) 2858-2864.
  2. X.D. Wang, R.T. Qu, Z.Q. Liu and Z.F. Zhang: Mater. Sci. Eng. A 627 (2015) 336-339.
  3. Z. Song, Q. He, E. Ma and J. Xu: Acta Mater. 99 (2015) 165-175.
  4. Y.H. Chen, J.C. Huang, L. Wang and T.G. Nieh: Intermetallics 41 (2013) 58-62.
  5. Y. Zhang, W.H. Wang and A.L. Greer: Nat. Mater. 5 (2006) 857-860.
  6. B. Gludovatz, M.D. Demetriou, M. Floyd, A. Hohenwarter, W.L. Johnson and R.O. Ritchie: Proc. Natl. Acad. Sci. USA 110 (2013) 18419-18424.
  7. C.P. Chuang, T. Yuan, W. Dmowski, G.Y. Wang, M. Freels, P.K. Liaw, R. Li and T. Zhang: Sci. Rep. 3 (2013) 2578.
  8. D. Závodská, M. Guagliano, O. Bokůvka and L. Trško: Mater. Today: Proceedings. 3 (2016) 1220-1225.
  9. R. Raghavan, R. Ayer, H.W. Jin, C.N. Marzinsky and U. Ramamurty: Scr. Mater. 59 (2008) 167-170.
  10. Y. Yue, R. Wang, D.Q. Ma, J.F. Tian, X.Y. Zhang, Q. Jing, M.Z. Ma and R.P. Liu: Intermetallics 60 (2015) 86-91.
  11. J. Luo, H. Duan, C. Ma, S. Pang and T. Zhang: Mater. Trans. 47 (2006) 450-453.
  12. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue and K. Higashi: Intermetallics 10 (2002) 1071-1077.
  13. J.W. Qiao, E.W. Huang, G.Y. Wang, H.J. Yang, W. Liang, Y. Zhang and P.K. Liaw: Mater. Sci. Eng. A 563 (2013) 101-105.
  14. G.Y. Wang, P.K. Liaw, X. Jin and Y. Yokoyama: J. Appl. Phys. 108 (2010) 113512.
  15. G.Y. Wang, P.K. Liaw, Y. Yokoyama, A. Peker, W.H. Peter, B. Yang, M. Freels, Z.Y. Zhang, V. Keppens, R. Hermann, R.A. Buchanan, C.T. Liu and C.R. Brooks: Intermetallics 15 (2007) 663-667.


© 2017 The Japan Institute of Metals and Materials
Comments to us :