Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.749-756
© 2017 The Japan Institute of Metals and Materials

Evaluation of Ion-Irradiation Hardening of Tungsten Single Crystals by Nanoindentation Technique Considering Material Pile-Up Effect

Eva Hasenhuetl1, Ryuta Kasada2, Zhexian Zhang2, Kiyohiro Yabuuchi2, Yen-Jui Huang1 and Akihiko Kimura2

1Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
2Institute of Advanced Energy (IAE), Kyoto University, Uji 611-0011, Japan

Ion-irradiation hardening of pure tungsten (W) single crystal was evaluated by nanoindentation (NI) technique considering material pile-up effect. Pure W single crystals of (001) surface orientation were ion-irradiated with 6.4 MeV Fe3+ to 0.1 dpa, 1 dpa or 2 dpa at 573 K. The irradiation hardening was evaluated by means of NI measurements with elastic-modulus-based correction (EMC) method [C. Heintze et al.: J. Nucl. Mater. 472 (2016) 196-205]. The effect of material pile-up in tungsten was so significant that the bulk equivalent hardness values by EMC method were about 70% and 85% of uncorrected results for irradiated and unirradiated W(001), respectively. The ion-irradiation hardening values by EMC based method were approximately 40%, 50% and 60% of uncorrected results for 0.1 dpa, 1 dpa and 2 dpa, respectively. The measured maximum pile-up height was higher for irradiated W(001) than for unirradiated W(001) at each indentation depth. An averaged pile-up height that was associated with the actual area of contact of pile up obtained from EMC hardness showed different responses to ion-irradiation depending on the indentation depth.

[doi:10.2320/matertrans.M2016437]

(Received 2016/12/08; Accepted 2017/02/22; Published 2017/04/25)

Keywords: tungsten, ion-irradiation hardening, hardness, nanoindentation, pile-up

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. K. Ezato, S. Suzuki, Y. Seki, K. Mohri, K. Yokoyama, F. Escourbiac, T. Hirai and V. Kuznetcov: Fusion Eng. Des. 98-99 (2015) 1281-1284.
  2. M. Merola, F. Escourbiac, A.R. Raffray, P. Chappuis, T. Hirai, S. Gicquel and I.B. Agcy: Fusion Eng. Des. 96-97 (2015) 34-41.
  3. H. Bolt, V. Barabash, W. Krauss, J. Linke, R. Neu, S. Suzuki, N. Yoshida and A.U. Team: J. Nucl. Mater. 329-333 (2004) 66-73.
  4. A. Hasegawa, M. Fukuda, T. Tanno and S. Nogami: Mater. Trans. 54 (2013) 466-471.
  5. Z.X. Zhang, E. Hasenhuetl, K. Yabuuchi and A. Kimura: Nucl. Mater. Eng. 9 (2016) 539-546.
  6. Z.X. Zhang, D. Chen, W. Han and A. Kimura: Fusion Eng. Des. 98 (2015) 2103-2107.
  7. E. Hasenhuetl, R. Kasada, Z.X. Zhang, K. Yabuuchi and A. Kimura: Mater. Trans. 58 (2017) 580-586.
  8. D.E.J. Armstrong, A. Wilkinson and S.G. Roberts: Phys. Scr. T145 (2011) 014076.
  9. D.E.J. Armstrong, P.D. Edmondson and S.G. Roberts: Appl. Phys. Lett. 102 (2013) 251901.
  10. J.S.K.L. Gibson, S.G. Roberts and D.E.J. Armstrong: Mater. Sci. Eng. A 625 (2015) 380-384.
  11. W.C. Oliver and G.M. Pharr: J. Mater. Res. 7 (1992) 1564-1583.
  12. A.C. Fischer-Cripps: Surf. Coat. Tech. 200 (2006) 4153-4165.
  13. W.D. Nix and H. Gao: J. Mech. Phys. Solids 46 (1998) 411-425.
  14. I. Manika and J. Maniks: J. Phys. D 41 (2008) 074010.
  15. W.C. Oliver and G.M. Pharr: J. Mater. Res. 19 (2004) 3-20.
  16. A. Bolshakov and G. Pharr: J. Mater. Res. 13 (1998) 1049-1058.
  17. Y.-H. Lee, U. Baek, Y.-I. Kim and S.-H. Nahm: Mater. Lett. 61 (2007) 4039-4042.
  18. Y. Lee, J. Hahn, S. Nahm, J. Jang and D. Kwon: J. Phys. D 41 (2008) 074027.
  19. D. Bahr, D. Kramer and W. Gerberich: Acta Mater. 46 (1998) 3605-3617.
  20. W. Gerberich, J. Nelson, E. Lilleodden, P. Anderson and J. Wyrobek: Acta Mater. 44 (1996) 3585-3598.
  21. C. Heintze, F. Bergner, S. Akhmadaliev and E. Altstadt: J. Nucl. Mater. 472 (2016) 196-205.
  22. C.E. Beck, F. Hofmann, J.K. Eliason, A.A. Maznev, K.A. Nelson and D.E.J. Armstrong: Scr. Mater. 128 (2017) 83-86.
  23. C.D. Hardie, S.G. Roberts and A.J. Bushby: J. Nucl. Mater. 462 (2015) 391-401.
  24. A. Kohyama, Y. Katoh, M. Ando and K. Jimbo: Fusion Eng. Des. 51-52 (2000) 789-795.
  25. “INTERACTION OF IONS WITH MATTER” by J.F. Ziegler. http://www.srim.org/, (accessed 2016-09-17).
  26. ISO 14577-1: 2002 Metallic Materials- Instrumented Indentation Test for Hardness and Materials Parameters - Part 1: Test method.
  27. I.N. Sneddon: Int. J. Eng. Sci. 3 (1965) 47-57.
  28. A. Ternovskii, V.P. Alekhin, M.K. Shorshorov, M. Khrushchev and V. Skvortsov: Zavodskaya Lab. 39 (1973) 1242.
  29. S.I. Bulychev, V.P. Alekhin, M.K. Shorshorov, A. Ternovskii and G. Shnyrev: Zavodskaya Lab. 41 (1975) 1137-1140.
  30. S.I. Bylychev, V.P. Alekhin, M.K. Shorshorov and A. Ternovskii: Probl. Prochn 9 (1976) 79-83.
  31. M.K. Shorshorov, S.I. Bulychev and V.P. Alekhin: Sov. Phys. Dokl. 26 (1982) 769.
  32. S.I. Bulychev and V.P. Alekhin: 53 (1987) 1091-1096.
  33. R. Kasada, Y. Takayama, K. Yabuuchi and A. Kimura: Fusion Eng. Des. 86 (2011) 2658-2661.
  34. T. Tanno, A. Hasegawa, J.C. He, M. Fujiwara, S. Nagomi, M. Satou, T. Shishido and K. Abe: Mater. Trans. 48 (2007) 2399-2402.
  35. T. Tanno, M. Fukuda, S. Nogami and A. Hasegawa: Mater. Trans. 52 (2011) 1447-1451.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp