Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.739-748
© 2017 The Japan Institute of Metals and Materials

Ion Species/Energy Dependence of Irradiation-Induced Lattice Structure Transformation and Surface Hardness of Ni3Nb and Ni3Ta Intermetallic Compounds

H. Kojima1, Y. Kaneno1, M. Ochi1, S. Semboshi2, F. Hori1, Y. Saitoh3, N. Ishikawa4, Y. Okamoto5 and A. Iwase1

1Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan
2Trans-Regional Corporation Center for Industrial Materials Research, Institute for Materials Research, Tohoku University, Sakai 599-8531, Japan
3National Institutes for Quantum and Radiological Science and Technology, Takasaki 370-1292, Japan
4Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
5Materials Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan

Bulk samples of Ni3Nb and Ni3Ta intermetallic compounds were irradiated with 16 MeV Au, 4.5 MeV Ni, 4.5 MeV Al, 200 MeV Xe and 1.0 MeV He ions, and the change in near-surface lattice structure was investigated by means of the grazing incidence x-ray diffraction (GIXD) and the extended x-ray absorption fine structure (EXAFS). The Ni3Nb and Ni3Ta lattice structures transform from the ordered structures (orthorhombic and monoclinic structures for Ni3Nb and Ni3Ta, respectively) to the amorphous state by the Au, Ni, Al and Xe ion irradiations. Irrespective of such heavy ion species or energies, the lattice structure transformation to the amorphous state almost correlate with the density of energy deposited through elastic collisions. In the case of the samples irradiated with 1.0 MeV He ions, however, no amorphization was observed even when the density of elastically deposited energy is the same as that for Au irradiated sample which showed the amorphous phase. The change in Vickers hardness induced by the amorphization was also measured and was discussed in terms of ion fluence and the density of deposited energy.


(Received 2017/01/24; Accepted 2017/02/17; Published 2017/04/25)

Keywords: Ni3Nb, Ni3Ta, ion irradiation, dependence on deposited energy density, lattice structure transformation, Vickers hardness, amorphization

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. V.I. Lavrentiev and A.D. Pogrebnjak: Surf. Coat. Tech. 99 (1998) 24.
  2. S. Was, “Fundamentals of Radiation Materials Science”, Metals and Alloy, Springer 2007.
  3. N. Masahashi, T. Takasugi and O. Izumi: J. Mater. Sci. 22 (1987) 2599.
  4. M.-R. Yang and S.K. Wu: Oxid. Met. 54 (2000) 473.
  5. Y. Naik, G.A. Rama Rao and V. Venugopal: Intermetallics 9 (2001) 309.
  6. M. Mudgel, V.P.S. Awana, G.L. Bhalla and H. Kishan: Solid State Commun. 147 (2008) 439.
  7. Y.N. Koval, G.S. Firstov and A.V. Kotko: Scr. Metall. Mater. 27 (1992) 1611.
  8. S. Watanabe, T. Koike, T. Suda, S. Ohnuki and H. Takahashi: Mater. Trans. 45 (2004) 21.
  9. P. Moine and C. Jaouen: J. Alloy. Compd. 194 (1993) 373.
  10. J. Cheng and A.J. Ardell: NIMB 44 (1990) 336.
  11. D.F. Pedraza: Mater. Sci. Eng. 90 (1987) 69.
  12. L. Thomé, C. Jaouen, J.P. Riviere and J. Delafond: NIMB 19-20 (1987) 554.
  13. M. Nastasi, J.M. Williams, E.A. Kenik and J.W. Mayer: NIMB 19-20 (1987) 543.
  14. M. Nastasi: J. Less Common Met. 168 (1991) 91.
  15. A.T. Motta, L.M. Howe and P.R. Okamoto: Nucl. Mater. 270 (1999) 174.
  16. L.M. Howe, D. Phillips, A.T. Motta and P.R. Okamoto: Surf. Coat. Tech. 66 (1994) 411.
  17. W.J. Meng, P.R. Okamoto, L.J. Thompson, B.J. Kestel and L.E. Rehn: Appl. Phys. Lett. 53 (1988) 1820.
  18. G.J.C. Carpenter and E.M. Schulson: J. Nucl. Mater. 73 (1978) 180.
  19. G.B. Xu, M. Meshii, P.R. Okamoto and L.E. Rehn: J. Alloy. Compd. 194 (1993) 401.
  20. A. Plewnia, B. Heinz and P. Ziemann: NIMB 148 (1999) 901.
  21. J. Koike, P.R. Okamoto and M. Meshii: J. Non-Cryst. Solids 106 (1988) 230.
  22. S. Anada, A. Zensho, H. Yasuda and H. Mori: Philos. Mag. 96 (2016) 2027.
  23. S. Anada, T. Nagase, H. Yasuda and H. Mori: J. Alloy. Compd. 579 (2013) 646.
  24. S. Anada, T. Nagase, H. Yasuda and H. Mori: J. Alloy. Compd. 581 (2013) 324.
  25. T. Nagase, A. Sasaki, H. Yasuda, H. Mori, T. Terai and T. Kakeshita: Intermetallics 19 (2011) 1313.
  26. T. Nagase, K. Takizawa, M. Wakeda, Y. Shibutani and Y. Umakoshi: Intermetallics 18 (2010) 441.
  27. R. Devanathan, N.Q. Lam, P.R. Okamoto and M. Meshii: PRB 48 (1993) 42.
  28. D.F. Pedraza: Rad. Eff. Defects Solids 112 (1990) 11.
  29. D.F. Pedraza: J. Mater. Res. 1 (1986) 425.
  30. S. Shibuya, Y. Kaneno, M. Yoshida, T. Shishido and T. Takasugi: Intermetallics 15 (2007) 119.
  31. K. Ohira, Y. Kaneno and T. Takasugi: Mater. Sci. Eng. A 399 (2005) 332.
  32. H. Yoshizaki, A. Hashimoto, Y. Kaneno, S. Semboshi, F. Hori, Y. Saitoh and A. Iwase: Nucl. Instr. Meth. B. 354 (2015) 287.
  33. A. Hashimoto, Y. Kaneno, S. Semboshi, H. Yoshizaki, Y. Saitoh and A. Iwase: Jpn. J. Appl. Phys. 53 (2014) 05FC08.
  34. A. Hashimoto, Y. Kaneno, S. Semboshi, H. Yoshizaki, Y. Saitoh, Y. Okamoto and A. Iwase: Nucl. Instr. Meth. B 338 (2014) 72.
  35. H. Kojima, H. Yoshizaki, Y. Kaneno, S. Semboshi, F. Hori, Y. Saitoh, Y. Okamoto and A. Iwase: Nucl. Instr. Meth. B 372 (2016) 72.
  36. J. Ziegler,
  37. T. Ressler: J. Synchrotron Radiat. 5 (1998) 118.
  38. K. Zeng, X. Zeng and Z. Jin: J. Alloy. Compd. 179 (1992) 177.
  39. P. Wesseling, B.C. Ko and J.J. Lewandowski: Scr. Mater. 48 (2003) 1537.
  40. R.C. Ruhl, B.C. Giessen, M. Cohen and N.J. Grant: Acta Metall. 15 (1967) 1693.
  41. T.B. Massalski: Binary Alloy Phase Diagrams, II Ed. 3 (1990) 2865.
  42. A. Barbu, H. Dammak, A. Dunlop and D. Lesueur: MRS Bull. December. 20 (1995) 29.
  43. M. Ghidini, J.P. Nozières, D. Givord, M. Toulemonde and B. Gervais: J. Phys. Condens. Matter 8 (1996) 8191.
  44. A. Barbu, A. Dunlop, A. Hardouin Duparc, G. Jaskierowicz and N. Lorenzelli: NIMB 145 (1998) 354.


© 2017 The Japan Institute of Metals and Materials
Comments to us :