Materials Transactions Online

Materials Transactions, Vol.58 No.05 (2017) pp.724-727
© 2017 The Japan Institute of Metals and Materials

Enhanced Hydrogen Generation Properties of Al-Ga-In-Sn Alloy in Reaction with Water by Trace Amount of AlTi5B Additives

Zhixiong Xie1, 2, Shijie Dong1, 2, Ping Luo1, 2 and Huihu Wang1, 2

1School of Materials and Chemistry Engineering, Hubei University of Technology, Wuhan, 430068, China
2Hubei provincial key laboratory of green materials for light industry, Hubei University of Technology, Wuhan, 430068, P. R. China

Al-3Ga-3In-Sn (mass%) alloy with a little amount of AlTi5B as refiner was fabricated using a simple smelting and casting method. The phase compositions and microstructure were investigated by means of XRD and SEM with EDX. The hydrogen generation property of Al-Ga-In-Sn alloy with water was investigated. The results show that the Al grains and GIS (Ga-In-Sn) particles are refined and more uniform with adding AlTi5B to Al-Ga-In-Sn alloy. Al grains size decrease from 120 μm to 40 μm and the GIS particles are refined to 1 μm respectively. The hydrogen generation rate of Al-3Ga-3In-Snalloy with 0.1 mass%AlTi5B reaches 44 mL/min g at 30℃, and 460 mL/min g at 60℃, which is much higher than that of Al-3Ga-3In-Sn alloy. The high hydrogen generation rate is ascribed to the Al grain refinement and increasing amounts of GIS particle.


(Received 2016/12/01; Accepted 2017/02/01; Published 2017/04/25)

Keywords: aluminium-gallium-indium-tin alloys, grain refinement, hydrogen generation rate, intermetallic compounds

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S.M. Kotay and D. Das: Int. J. Hydrogen Energ. 33 (2008) 258-263.
  2. W.C. Lattin and V.P. Utgikar: Int. J. Hydrogen Energ. 32 (2007) 3230-3237.
  3. T. Huang, Q. Gao, D. Liu, S. Xu, C. Guo, J. Zou and C. Wei: Int. J. Hydrogen Energ. 40 (2015) 2354-2362.
  4. M.-H. Grosjean and L. Roué: J. Alloy. Compd. 416 (2006) 296-302.
  5. M.H. Grosjean, M. Zidoune, L. Roué and J.Y. Huot: Int. J. Hydrogen Energ. 31 (2006) 109-119.
  6. Z.-Y. Deng, J.M.F. Ferreira and Y. Sakka: J. Am. Ceram. Soc. 91 (2008) 3825-3834.
  7. H.Z. Wang, D.Y.C. Leung, M.K.H. Leung and M. Ni: Renew. Sustain. Energy Rev. 13 (2009) 845-853.
  8. B. Alinejad and K. Mahmoodi: Int. J. Hydrogen Energ. 34 (2009) 7934-7938.
  9. A.V. Parmuzina and O.V. Kravchenko: Int. J. Hydrogen Energ. 33 (2008) 3073-3076.
  10. L. Soler, A. Maria Candela, J. Macanas, M. Munoz and J. Casado: Int. J. Hydrogen Energ. 35 (2010) 1038-1048.
  11. L. Soler, J. Macanás, M. Muñoz and J. Casado: J. Power Sources 169 (2007) 144-149.
  12. M. Fan, F. Xu and L. Sun: Int. J. Hydrogen Energ. 32 (2007) 2809-2815.
  13. J.T. Ziebarth, J.M. Woodall, R.A. Kramer and G. Choi: Int. J. Hydrogen Energ. 36 (2011) 5271-5279.
  14. W. Wang, X.M. Zhao, D.M. Chen and K. Yang: Int. J. Hydrogen Energ. 37 (2012) 2187-2194.
  15. W. Wang, D.M. Chen and K. Yang: Int. J. Hydrogen Energ. 35 (2010) 12011-12019.
  16. H.H. Wang, Y. Chang, S.J. Dong, Z.F. Lei, Q.B. Zhu, P. Luo and Z.X. Xie: Int. J. Hydrogen Energ. 38 (2013) 1236-1243.


© 2017 The Japan Institute of Metals and Materials
Comments to us :