Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.697-700
© 2017 The Japan Institute of Metals and Materials

Phase Transformation Induced by High Nitrogen Content Solid Solution in the Martensitic Stainless Steels

Abdelrahman Farghali1 and Tatsuhiko Aizawa2

1Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 108-8548, Japan
2Department of Engineering and Design, Shibaura Institute of Technology, Tokyo 108-8548, Japan

A high density plasma nitriding experiment was performed on a circular disk specimen of martensitic stainless steel at the temperature of 673 K for 14.4 ks. The nitrided thickness was 80 μm in depth from the surface with a high surface nitrogen concentration of 31 at%. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDX) and, electron backscattering diffraction (EBSD) were used to analyze the microstructure, the nitrogen content distribution, the phase formation, the grain size, and the straining in the specimen. Phase transformation from martensitic to austenitic phases took place together with high straining as well as grain size refinement.


(Received 2016/12/08; Accepted 2017/01/13; Published 2017/03/25)

Keywords: martensitic stainless steel, low-temperature plasma nitriding, phase transformation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. X. Yun-tao, L. Dao-xin and H. Dong: Appl. Surf. Sci. 254 (2008) 5953-5958.
  2. J. Flis, J. Mankowski and E. Rolinski: Surf. Eng. 5 (1989) 151-157.
  3. R. Wei, J.J. Vajo, J.N. Matossian, P.J. Wilbur, J.A. Davis, D.L. Williamson and G.A. Collins: Surf. Coat. Tech. 83 (1996) 235-242.
  4. O. Öztürk and D.L. Williamson: J. Appl. Phys. 77 (1995) 3839-3850.
  5. T. Aizawa and H. Kuwahara: Mater. Trans. 44 (2003) 1303-1310.
  6. C. Blawert, B.L. Mordike, U. Rensch, G. Schreiber and H. Oettel: Surf. Eng. 18 (2002) 249.
  7. N. Granito, H. Kuwahara and T. Aizawa: J. Mater. Sci. 37 (2002) 835-844.
  8. C.X. Li and T. Bell: Corros. Sci. 48 (2006) 2036-2049.
  9. C. Blawert, B.L. Mordike, Y. Jiraskova and O. Schneeweiss: Surf. Coat. Tech. 116-119 (1999) 189.
  10. M. Samandi, B.A. Shedden, D.I. Smith, G.A. Collins, R. Hutching and J. Tendys: Surf. Coat. Tech. 59 (1993) 261.
  11. S. Mandl and B. Rauschenbach: J. Appl. Phys. 91 (2002) 9737.
  12. S.K. Kim, J.S. Yoo, J.M. Priest and M.P. Fewell: Surf. Coat. Tech. 163-164 (2003) 380-385.
  13. I. Alphonsa, A. Chainani, P.M. Raole, B. Ganguli and P.I. John: Surf. Coat. Tech. 150 (2002) 263.
  14. A. Leyland, D.B. Lewis, P.R. Stevenson and A. Matthews: Surf. Coat. Tech. 62 (1993) 608.
  15. T. Aizawa and Y. Sugita: Res. Rep. SIT 57-1 (2013) 1-10.
  16. C. Domain, C.S. Becquart and J. Foct: Physical Review B 69 (2004) 114112.
  17. Y. Imai, M. Izumiyama and M. Tsuchiya: the res. Inst. Tohuku Univ. A17 (1965) 173.
  18. A. Farghali and T. Aizawa: Proc. 10th SEATUC, Tokyo (2016) (CD-ROM).


© 2017 The Japan Institute of Metals and Materials
Comments to us :