Materials Transactions Online

Materials Transactions, Vol.58 No.04 (2017) pp.679-687
© 2017 The Japan Institute of Metals and Materials

Critical Current and n-Value of Heterogeneously Cracked Superconducting Tapes, Studied by a Monte Carlo Simulation Method Combined with a Model of Current Shunting at Cracks

Shojiro Ochiai1, Hiroshi Okuda2 and Noriyuki Fujii2

1Elements Strategy Initiative for Structural Materials, Kyoto University, Kyoto 606-8501, Japan
2Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan

Influences of crack size-distribution and specimen length on the critical current and n-value of heterogeneously cracked superconducting tapes were studied by a Monte Carlo simulation method combined with a model of crack-induced current shunting. In simulation, model specimens, constituted of a series of sections having cracks with different size to each other, were used. It was shown by the present simulation that (i) both of the critical current and n-value decrease with increasing width of crack size distribution, (ii) n-value decreases more sensitively to the increase in width of crack size distribution in comparison with the critical current, and (iii) the features (i) and (ii) stated above are enhanced with increasing specimen length. Also, the experimentally observed feature that the width of distribution of critical current decreases with increasing length in heterogeneously cracked superconducting tapes was realized by the present simulation. This result was in good accordance with the reported feature that local information of critical current values in a specimen is diluted when the voltage tap distance is large.

[doi:10.2320/matertrans.MBW201602]

(Received 2016/10/21; Accepted 2017/01/31; Published 2017/03/25)

Keywords: superconducting tape, crack, specimen length, Monte Carlo simulation, critical current, n-value

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. N. Cheggour, J.W. Ekin, C.H.L. Thieme, Y.-Y. Xie, V. Selvamanickam and R. Feenstra: Supercond. Sci. Technol. 18 (2005) S319-S324.
  2. K. Osamura, M. Sugano, S. Machiya, H. Adachi, S. Ochiai and M. Sato: Supercond. Sci. Technol. 22 (2009) 065001.
  3. S. Ochiai, T. Arai, A. Toda, H. Okuda, M. Sugano, K. Osamura and W. Prusseit: J. Appl. Phys. 108 (2010) 063905.
  4. D.C. van der Laan, J.W. Ekin, F.F. Douglas, C.C. Clickner, T.C. Stauffer and L.F. Goodrich: Supercond. Sci. Technol. 23 (2010) 072001.
  5. S. Ochiai, H. Okuda, T. Arai, S. Nagano, M. Sugano and W. Prusseit: Cryogenics 51 (2011) 584-590.
  6. H.-S. Shin, J. Marlon, H. Dedicatoria, H.-S. Kim, N.-J. Lee, H.-S. Ha and S.-S. Oh: IEEE Trans. Appl. Supercond. 21 (2011) 2997-3000.
  7. S. Ochiai, H. Okuda, T. Arai, M. Sugano, K. Osamura and W. Prusseit: J. Japan Inst. Copper “Copper and Copper Alloys” 52 (2013) 225-230.
  8. H. Oguro, T. Suwa, T. Suzuki, S. Awaji, K. Watanabe, M. Sugano, S. Machiya, M. Sato, T. Koganezawa, T. Machi, M. Yoshizumi and T. Izumi: IEEE Trans. Appl. Supercond. 23 (2013) 8400304.
  9. S. Ochiai, H. Okuda, M. Sugano, S.-S. Oh and H.-S. Ha: Mater. Trans. 55 (2014) 549-555.
  10. Y. Fang, S. Danyluk and M.T. Lanagan: Cryogenics 36 (1996) 957-962.
  11. J.K. Shin, S. Ochiai, H. Okuda, M. Sugano and S.-S. Oh: Supercond. Sci. Technol. 21 (2008) 115007.
  12. S. Ochiai, M. Fujimoto, J.K. Shin, H. Okuda, S.S. Oh and D.W. Ha: J. Appl. Phys. 106 (2009) 103916.
  13. S. Ochiai, H. Okuda, M. Sugano, K. Osamura, A. Otto and A.P. Malozemoff: Mater. Trans. 53 (2012) 1549-1555.
  14. S. Ochiai, H. Okuda, H. Matsubayashi, K. Osamura and A. Otto: Mater. Trans. 57 (2016) 709-715.
  15. N. Banno, D. Uglietti, B. Seeber, T. Takeuchi and R. Flükiger: Supercond. Sci. Technol. 18 (2005) 284-288.
  16. Y. Miyoshi, E.P.A. Van Lanen, M.M. Dhallé and N. Nijhuits: Supercond. Sci. Technol. 22 (2009) 085009.
  17. H. Kitaguchi, H. Kumakura and K. Togano: Physica C 363 (2001) 198-201.
  18. H. Kitaguchi, A. Matsumoto, H. Hatakeyama and H. Kumakura: Physica C 401 (2004) 246-250.
  19. T. Kiss, H. van Eck, B. ten Haken and H. Ten Kate: IEEE Trans. Appl. Supercond. 11 (2001) 3888-3891.
  20. S. Ochiai, H. Okuda and N. Fujii: Mater. Trans. 55 (2014) 1479-1487.
  21. S. Ochiai, H. Okuda and N. Fujii: Mater. Trans. 56 (2015) 381-388.
  22. J.J. Gannon Jr., A.P. Malozemoff, R.C. Diehl, P. Antaya and A. Mori: IEEE Trans. Appl. Supercond. 23 (2013) 8002005.
  23. S. Ochiai, H. Okuda, M. Fujimoto and K. Osamura: Mater. Trans. 56 (2015) 1558-1564.


[JIM HOME] [JOURNAL ARCHIVES]

© 2017 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp